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Abstract—This paper addresses the important problem of and to recognize dangerous situations or events that might
detecting and tracking vehicles in outdoor dynamic scenes as results from a chain of such behaviors. The system must be
part of a real-ime traffic surveillance system. The proposed gy st 10 jllumination changes and small camera movements,

solution is based on a dual-stage approach, using a pixel-level bei ble t bustly track vehicl inst luSi d
stage to extract foreground object from background scenes and €ing able 1o robustly track vehicles against occlusions an

a block-level stage to detect and track vehicles. The pixel-level crowded events.
stage combines a multi-background modelling with a dynamic To achieve these goals, a dual-stage approach was adopted,
thresholding, using a low-scale quasi-connected-components asysing a pixel-level approach to extract foreground objects

a first stage for image object grouping/cleaning. The block-  ,qm hackground scenes and a block-level to robustly detect
level performs a 8x8 block-region analysis defining a block and track vehicles

energy function that is used to label the blocks belonging to ) . . .
different vehicles and track them over a stack of images. This ~ 1he pixel-level combines a multi-background modelling
approach has proven to be very helpful for occlusion reasoning. with a dynamic thresholding, using a low-scale quasi-
The proposed solution has the ability to overcame some of connected-component as a first stage to group pixels into
the most difficult problem that arise in outdoor scenes such potential vehicles ([19], [18]). One of the major problems to

as illumination variations, shadow-casts and waving movement overcome at the pixel level is the existence of shadow-casts
resulting from trees and camera vibration. The performance P

and robustness of the proposed algorithm is shown using real induced by the vehicles themselves, which tends to merge the

highway traffic monitoring situations. detected blobs of nearby vehicles and the glares induced on
the surfaces of the highway (pavement and limit protection
|. INTRODUCTION barriers) by vehicle’s night light system ([22], [5], [7], [10]).

In order to support safe and efficient driving, it is importanf® Simple and efficient approach has been implemented in
to classify the behaviors of vehicles and to understand thei¥der to minimize these type of problems.
interactions on typical traffic scenarios. Until recent years, The pixel-level stage delivers a set of object blobs that
this task was performed by human operators at traffic contréf€ Validated and tracked at the block-level stage. At the
centers, but the huge increase on the number of availagiock-level stage the image is divided into 8x8 pixel blocks.
cameras requires automatic traffic surveillance systems ([243ne vehicle label is assigning to each block classified as
[22], [3], [23], [21], [4]. [6]. [8]). a vehicle. For the labelling process the algorithm uses a

In the last decades, one of the most important efforts iRlock-energy function [21] that is based on four different
ITS research has been the development of visual surveillané@rameters: block-motion vectors, block-texture matching,
systems that could help reduce the number of traffic incidenfighbor-blocks consistency and pixels-block overlapping.
and traffic jams in urban and highway scenarios. Anhoqucclusion reasoning and tracking are obtained combining the
the large number of systems based on different types EtPelling process with a Kalman filter tracker using a novel
sensors and their relative performance, vision based syste@fd simple algorithm to manage vehicle’s image grouping.
are very useful to collect very rich information about roadVith this approach, the system is able to track vehicles
traffic. even in the case of a partial occlusion, which happens quite

The work presented on this paper is part of an automatRften in traffic_ scenarios, specially with Iow-_angle oriented
traffic surveillance system. The primary goal of the systerf@meras or'W|th cameras mounted on the side of th'e road.
is to detect and track potentially anomalous traffic events 1he algorithm has proven to work robustly under different
along the highway roads. By anomalous events we mean thgimination conditions and camera noise, being used in a
detection of vehicles that stopped on the highway, vehicld§@l highway scenario.
driving in lane’s opposite direction and also vehicle that Il. PIXEL-LEVEL STAGE
are constantly switching between lanes. The system sho%d

be able to identify each vehicle and track its behavior, Background/foreground detection

Background/foreground detection is an essential compo-
*This Work was supported by BRISA-Auto Estradas de Portugal S.A. nent of most video surveillance systems involving object



detection and tracking. Such systems require, at the sameThe background images updates depends on feedback
time, both robustness against illumination changes and corinem upper level stages, and it is implemented recursively
putation feasibility. Most of the existing solutions eitherin a fully automatic way, using:

make strict assumptions about the scene, or fail to handle

abrupt illumination changes resulting from moving clouds 1t(0) + (1— no)Bt if o cT,

or camera automated gain control (AGC). Be(9) = { zjlt((% Jr((lf?;))Bct(((pq))) it g c ,\L 1)
Existing background modelling methods can be classified _; . ; ‘ ¢

as either single-layer or multi-layer. Single layer methods Be(¢) = B{9) @

obtain a model for the color distribution of each pixel based where ¢ is the pixel index,l; is the current frameys is
on past observations. Usually a single gaussian is considergg integration factor of a pixel classified as a targg) (
to model the statistical distribution of a background pixe{yhich is much smaller than the integration factor of a pixel
being updated through e-blending approach. Depending c|assified as nontargeNy, n;. The labelling of a pixel as
on the value of, either the foreground objects may premapeing in the target set or in the nontarget set is carried on at
turely blended into the background, or the model becomgge block level stage. The use of different integration factor
unresponsive to the observations. for pixels belonging to target set and nontarget set will help
Stauffer and Grimson [2] modelled the background withhe system to adapt more slowly the potential target regions.
a mixture of Gaussian models (MoG). Rather than explicitlyjowever, the presence of ghosts, i.e., false target regions due
modelling the values of all pixels as one particular typgo statics objects belonging to the background image (e.g.,
of distribution, the background is obtained by a pixeltars) which suddenly start to move, results in longer false
wise mixture of Gaussian distributions to support multiplgylarms. This problem is solved using the third background
backgrounds. MoG are adaptable to illumination changegage, increasing the integration factor for that region if the
with the huge advantage of handling multiple backgroundsarget region is present in that background image mode!.
However, their performance deteriorates when the scene to begackground updating is called at the final processing step
described is dynamic and exhibits non-stationary propertieg 3 frame, so it has access to both the final label image
in time. Outdoor lighting variations are complex and MOG_ and the original thresholded difference ima@en(¢).
doesn't prove to be robust to sudden illumination changeghis thresholded difference image is obtained combining
that may results from moving sparse clouds. background subtraction with a dynamic thresholding.

B. Multi-layer Background Modelling C. Dynamic thresholding

In real outdoor scenarios, like a highway, the environment Four different thresholds are used: the per-pixel threshold
is highly dynamic and the detection solution must be tailore€llpp), the low thresholdT), the high thresholdTg) and the
to robustly detect non-cooperative targets. To achieve thgdobal threshold Tg).
goal, a multi-layered and adaptive background modelling was The Tpp, attempts to account the scene noise at a pixel
adopted using an approach based on three background im&lgi@ugh time, e.g., when the camera shakes, the edge pixels
models. Out of these three models, two of them are used 4l have a significant intensity change; in these cases, we
model the dynamics of the background allowing the systetill increase theT,p. The Ty is the minimum value to
to cope with intensity variations due to illumination change€liminate camera noise and depends on the scenggio.
or noise and fluttering objects moving on the scene. The thiig initialized using the difference of the initial background
background image is used in the cleaning/validation procedg)ages
being a direct copy of a past image. Ty(9) = |Bp(¢) — Bs(¢)|. 3)

For a certain time step, let the primary background be
represented b, and the secondary background By. To
reduce computational cost, at the end of each time step, t Ffference exceeds the low threshdid L.e.,
primary background holds the pixel values that are closest 10
the current image. If this is not the case at the current time min = ‘|t(¢) — B}(q))] > Ti(¢) 4)
step, pixels are swaped between the two background images :
to make this likely to be the case in the next time stepghe pixel is considered as active (potential target pixel). A

The algorithm computes the per-pixel difference between
éhe image and both background images, and if the smaller

The background model with smaller differenbg(D; =1' —  target is a set of connected active pixels such that a subset
B!, i = p,9) is represented b; and the other background of them verifies
by Be. ot t

Representing the RGB color values of a pixel ky) min= [1(6) ~ Bi(®)] > Ta(9) ©)

being ¢ = (x,y,c), the background imageB;(¢)i—ps are
initialized using a set off consecutive object free images
such that

where T, is a high threshold. The low thresholf is the

'sum of a scenario dependent threshdjdand a per-pixel

threshold Ty, that dynamically adapts its value along the

Bp(¢) =min{l'(¢),t =1.T} .. process, i.e.
1T if 1'(¢) eN

Bs(9) = max{1'(¢),t Ti(¢) =Tg +Tpp(9), (6)



and the high threshold is defined as D. Regions Definition

Th(¢) =Ti(¢) +C, @ Most systems compute the. difference betwgen the current
frame and the background image and consider as targets
whereC is a constant whose value depends on the scenarife pixels above a certain threshold. Then, pixels close to

The thresholded difference ima@k:, is defined in such a each other are clustered to form possible targets regions.
way that it is non-zero only if the pixel is active, i.e., This process usually leaves gaps that might lead to erroneous

o thY _ Rt ; ; targets detection. Morphology can fill these gaps but using

Din(¢) —{ g1|n.|l (0)=Bi(0)] :I igtrllv_eactive (8) threshold-with-hysteresis is a more accurate way because
only meaningful gaps are filled.

Each pixel in a new frame is classified either as a target or 1) Quasi-Connected Components (QCThe QCC com-
nontarget pixel. Target pixels can also be classified as objasihes TWH with gap filling and connected component la-
(O), shadow (S) or highlight (H) and ghost (G) pixel. Thepelling. One of the techniques to keep a fast QCC process
clustering of target pixels is based on the following validatiorzonsists on a reduction in resolution that also provides gap

rules filling.
(0] — (target)&|~(shadow/highlight)]&(in motion) Based orDin(¢), a low resolution imag® (parent image)
S/IH — (target)&(shadow/highlight) is created. The thresholded difference image is divided in

G — (target)&[~(shadow/highlight)]&k-(in motion)]  regions which area is a factor multiple of two. Each pixel
A critical situation occurs whenever objects stop theivalue of the parent image stores the number of pixels above
movement for a period or when objects modelled as beirfjgh and low threshold of the corresponding region in the
part of the background start moving. To deal with thighresholded difference imagen.
situation, each pixel has a state transition map defining a/Analyzing the parent image, target regions are defined by
dynamic pixel rate of adaptation. The state transition magonnected pixels above the low threshold where the region
will encode in all the moving object pixels the elapsed tim@lso contains a given fraction of its pixels above the high

since the beginning of the object movement. Different rate§ireshold. In this way, the region has an overall high sensitiv-
of adaptation are used according to ity while also trying to ensure that at least some of the pixels

are very unlikely to be false alarms (since they are above
i i the high threshold). Only the regions that have a minimum

Ns if [Object A .

M=) K.e :if [(Ghost& (elapsed time- &)] (9)  number of plxe!s abové’h. equal to (0.00%A), yvhe_re A s

ns - Otherwise the corresponding area in the high resolution image, that
) i i _matches the previous labelled regions, in a spatial-temporal
where [t is the elapsed ;'me since the target stopped i§opge These two validation criteria are extremely useful to
movement and = VY being (Wp, hy) the width and distinguish between coherent targets from fuzzy collection

frn/V2HV2 . . .
height of the bounding box respectivelf, the frame rate of isolated points. AItho.ugh,.the QCC 'S unable to remove
shadow-casts and over-illuminated regions.

and (v ) the image velocity components of the bounding 2) Shadow-cast and over-illumination remov&hadow-

box center of mass. . : : ; .
1) Threshold Updating:Just like the background images,caSt and over-|IIL_Jm|nated_ regions occur _due to d_lfferent k|r_1d
n% sources. While the first occurs during daylight and is
i@duced by the sunlight, the latter occur during the night
and is induced by the vehicle’s night light system. In both
§ases, their presence induces the labelling of S/H regions

55 & nosy piel By incessinty of oy piels, e - IOFIS W I some cases are il to emove
system sensibility is reduced, as well as the probability o yp 9 '

. . . . : ffer an intensity variation related to the background
having pure noise regions classified as targets. When |xé ey sufter. ) X
gp 9 g P Images, being darker in the case of shadow-cast and lighter

are classified as nontarget thélig, is reduced, therefore in th f over-illumination while the remaining featur
increasing their sensibility. The per-pixel threshdlgl, is e.casel ? °| N 't“bl aWO b N (ej ;‘1 f‘ gt eaf “S?fl
modified according to: remain relatively stable. We observed that most o

pixels can be correctly removed using a simple 8x8 block

1.0 :if [(GhosY& (elapsed time< &)]

processing, i.e, after determining which pixels belong to th
target and nontarget sets. If a pixel Bfy, is declared as
active and it is not on the target set, then it is labelle

Top(¢)+Cy if Din(¢) >0 & ¢ €Ny normalized cross-correlation between the image and the
Top(¢)—1  if Din(¢) =0 & primary background (figure 1).
Top(9) = modupct(¢),C¢) = 0 &(10) Representing the image blocks centered at each pixel
Top(¢) >0 of the labelled target regions as vectors, the normal-
Top otherwise ized cross-correlation (NCC) between two blocks=

(Po,P1,---,Pn—1)" andQ = (0o, Ty, ...,0n-1)", where N is

whereDy(9) is the thresholded difference imagmct(¢) the number of pixels in the block, is given by

is a matrix that holds the update count @bdis a system
parameter. The initial threshold values were obtained empir- 1 S
ically andC¢ = 8. NCC= 0p0q (P-P)-(Q-Q) (11)



tions.

This very simple solution works very well for light
shadow-casts and it is a very efficient process to eliminate
ghost regions due to over-illumination (figure 2).

IlIl. BLOCK-LEVEL STAGE

The block-level stage has to accomplish two main tasks
which are implemented as two different processing steps:

Fig. 1. Foreground/background vehicle detection. Left: Vehicle and lig ; ; ; ;
shadow-cast detection. Right: The NCC between the image and the prim%rOUpIng management and object clustering and occlusion

background. rgasoning.
In the first step, a group reasoning algorithm has been

developed to label the occurrence of the detected tamets
in time framet into six distinct events: merge, split, merge&
split, new, lost or update.

In the second step, the image frame is decomposed into
a matrix of &8 blocks. The main purpose of this level step
is to classify each block into vehicles, assigning a vehicle
label to each block. This is accomplished by performing a
8x8 block-region analysis defining a block energy function
that is used to label the blocks belonging to different vehicles
and track them over a stack of images.

This labelling process outputs a target/nontarget label
imagel that is feedback to the pixel-level stage.

;'*

A. Single-view tracking

The single-view tracking aims to track at the image level
all moving targets detected and segmented by the pixel-level
stage.

The target state vector is represented by =
[Po Wo Po Vib]", where pp = (xy) and pp = (xy) are
the position and velocity of the vehicle’s bounding box
center of mass angy, is the dimension of the bounding
box.

The system model used is the following discrete model

[91:
X = (X1, k—1) + Wy Ze=hXcK+Ve (19

whereWy is a discrete-time white noise process with mean
zero and covariance matriQ, Vi is a discrete-time white
noise process with mean zero and covariance magix
Fig. 2. Shadow-cast and over-illumination detection. (Rows 1&2 : Lighf'jmd WJ" Vi, and Xo are uncorrelated for all and k. We
shadow-cast detection. Rows 3&4 : Over-illumination detection due to theonsidered the assumption that trajectories are locally linear
vehicle light system. in 2D and the width of the bounding box changes linearly.
In this case the resulting system model follows a linear

- difference equatiorXy = A- X where the system
wherec, andog are the standard deviations over the blockg, | 0 mgtrix Af(kis bas);kdlt;t\V\ﬁrst order NeV\)//tonian

andP and Q are vectors containing the means: dynamics and assumed time invariant.

p— — : T
Gp=1/(P—P)- (P—P) (12) Th(_a measurement vector is represeqtechyt [P, W)
and is related to the state vector via the measurement
_ _ 1 N equationZy = C- X, + V.
P:(papa wﬁ)T p:N Pi (13) .
i= B. Grouping management
If At this stage it is important to define the concept of an
{ mgqx’y)xyﬂ z g g/l:lj ; (14) object An objectcan have a single or compound nature and
CO%Y)xyel < Jec represent an image tracked target. It is represented by the

After this cleaning process, a normal connected compalescriptorOn = [Tn, &n, j, {L[i]|i=1.j}], where T, represents
nent phase is applied followed by some morphology operéhe object descriptorf, the tracker parameters arjdthe



number of targets associated to the objeck|i] is a list of events, the algorithm have to disambiguate which objects are
pointers to thej object descriptors that form the compoundassociated to different targets.
object ( > 1). Based on the correspondence matriceéMy, four man-

The target model descriptor, represented By = agers, running in cascade, were used to handle the image
[Pb, Wh, Ay, X, N[i]li=1. k], IS composed of several primitives: objects split managermergemanagermnew/lostmanager and
the image coordinates of the bounding box center of masgpdatemanager.

(pw), the dimension of the bounding bowy), the area of the ~ The Split manager- When a split event is detected, two
blob (Ay), a block object mapX; that has the label distribution possible situations can occur: a compound object split (the
from time framet, and the color information associated tomost common case) or a single object split (when a group
eachk target blocksh[i]i—1. x (block-color histogram). of vehicles enter the surveillance area and split).

To disambiguate between possible candidates of corre-To handle the compound object split, the manager creates
spondence in the tracking process multiple image cues amenew correspondence matrix between the objects inside
used based on spacial and temporal estimation and colorthe compound object and the image targéfs) that are

Assume that we havé\ a posterior estimated image detected as split candidates. The correspondence is, this time,
position objects (O;) and M detectedtargets (T;) for time  based on block-region analysis, by associating a detected
framet. The bounding boxes overlapping ratio target to each object of the compound. In the case of a

A A compound object, the object descrip@y has all the relevant
OR(éi,Tj) max<ﬂ(oivTj)7ﬂ(Oi:Tj)> (16) information of the singular objects inside the compound.
Tj VO Each single block of the compound object has an object

_ _ ) . label that supply a first hint to disambiguate which objects
is used to build correspondence matric€Mj betweenOi  5re associated to different targets.

andT; for time framet. 17 represent the area of the bounding | grder to handle the splitémerge event, after the correct

box and) the bounding boxes overlapping area. ~ matching of the splitting objects, the descriptors of each
The correspondence matrbCK) is a N x M matrix, gpject inside the compound are recovered from the com-
defined as follows pound object descriptor and added to the tracked object list,

o [1 OR(éi,Tj) >T ' associating to each object the segmented target primitives of

CM(i, ) = { 0 OROG;,T)<T Vier.N jer.m (A7) e target they matched. The compound object descriptor is
. ) removed from the tracked objects list and discarded. In case

where T is the threshold which accounts for the overlagy 5 gpjitemerge event, the tracked object list is feeded into
requirement. We define two auxiliary vectors the merge manager that creates a new compound object for

M N the new merged object.

CML(i) = Z CM(i, j)vie,y  CMc(j) = Z\CM(L j)Vjel...M For the case of a single split, new objects are created and
=1 = added to the new born object list, associating the detected

1 - . . . S
(18) descriptor to each one of them. This new object is definitely
CM: M| ] ...] ™| CM moved to the tracked object list after being tracked for 5
O |[1]0]..]1 2 consecutive frames (temporal consistency).

O [0]1]..]0 1 The Merge manager-When a merge situation is detected,
: : : : : a compound object descriptor is created and added to the
O'N (') 1 (') 1 list of object trackers, moving the object descriptors of
CMc [T 2 .. 1 the merged objects from the tracked object list to a dying
. , object list, decreasing its life vitality over a period of 10
Detected targetsT() are classified according to the fol- {5 mes heing definitely discarded after this period. The new

lowing rules: object descriptor store the descriptors of the objects merged
1—1 Ji :CML(i) =CMc(j) =1ACM(i, j) =1 (compound objects descriptors) and also the total number
Merge 3 :CMc(j) > IACM(i, j) =1 of targets that compose the compound target. If a split
gp:!t&M gi fgm-(!) >1A8M(".J):11 OM(i 1) — 1 situation is detected before the death of the objects (ex:
Ngvl\; erge = -ZCMLC(IJ)) g 0/\ Mc(j) > 1ACM(, ) = objects crossing), the objects descriptors are recovered from
Lost ai]:CML(i) -0 the dying objects list to the tracked list. Figure 3 shows the

(19) evolution of the split and merge manager on a split&merge
From these six classification rules, the most difficult teevent detection.

handle are the split, merge and split&merge events. In the Based on the posteriorkalman filter estimated velocity
case of merging the algorithm has to deal with total oall labelled blocks of objecO} ™ in time framet —1 are
partial occlusion and grouping. Its goal is to cluster therojected into time image frantel;. To each projected block
blocks superimposed by the detected taffjeinto different k superimposed by the detected target blab the energy
vehicles, determining the most likely block object m&p function F (k) is obtained. In a merging event with partial
based on the current targ@{, the object mapX_; and occlusion, several blocks tend to be labelled to different
the matched target in time frante- 1, T} ~1. For splitting objects, in special those on the borderline between both



Based on the posteriorkalman filter estimated velocity
all labelled blocks of objecOL ! in time framet — 1 are
projected into time image frantel;. To each projected block
BX superimposed by the detected target blgbthe energy
function £ (k) is obtained. In a +— 1 situation, the block
map X that minimizes the energy function is obtained using
the a posteriorkalman filter estimated velocity.

In a merging event with partial occlusion, several blocks
tend to be labelled to different objects, in special those on
the borderline between both objects. Using th@osterior
Kalman filter estimated velocity for each object, a predicted
block mapX; is obtained projecting the block mag_; of the
objects that merged into time franbeThis map is validated
minimizing the energy function

F=3 FKk (20)
keTy
Fig. 3. A split&merge event handeled by the proposed grouping manage-
ment algorithm. Top row: Split-manager; Bottom row: merge manager. F(k) =c1- (NIS _ 8)2 +Co- (Mg _ 64)2 +c3- (H(I:() (21)

] . ) whereN'g is the number of neighbor blocks of a bloBk, M'g
objgcts. These blocks are checked in order to decide to e3ghhe number of overlapping pixels of the blocks with the
vehicle they belong. _ same vehicle label, when the blo@ is re-projected into

The New/Lost manager-When a null value is detected previous time frame using the estimated velocity, t’HlH

on the last row of theCM matrix this means that a new s the normalized block color-histogram intersection ([12],
object was detected. A single object descriptor is created apﬂ;]) defined as

included on a list of new born object increasing is life vitality
over a stack of 5 frames. After this period, the descriptor is Kok ok 3 xmin(Bt,Bt—1)
moved to the tracked object list. He(Br,Bry) = Zx—Bt
If a null value is detected on the last column of @®!
matrix a lost object is considered to happen. Its descripté¥herex represents the number of histogram color bins.
is moved from the tracked object list to a dying object list In the case of partial occlusion, the algorithm need to
decreasing its life vitality for a period of 10 frames overdetermine to which of alternative objects a block is likely to
which it is definitely discarded. belong. In these cases, some of the borderline blocks tend to
The Update manager-At this stage, the tracked object be labelled as belonging to several objects. To disambiguate
list has a complet@bject— target matching, updating the this situation the algorithm estimates an energy function
object trackers with the segmented targdtg (nformation. for all possible candidates, using as matching criteria the
) ) _ _ minimum energy function.
C. Object clustering and occlusion reasoning During the tracking of a compound object, the update of
The block-energy function is defined based on spacial artie block mapX is based on the computation of block motion
temporal image correlation and block-color matching. Thregectors using image optical flow. The motion vector of each
measures are used in this energy functidk), whereke K,  objectOy inside the compound object is the average motion
andKjy is the set of blocks associated with targgt vector of the block labelled as objest This motion vector
The energy measures used are heck neighbor consis- is used to obtain the predicted block m¥pfor time frame
tency where the more neighbor blocks exist with the same The updated map¢ is used to cluster the blocks into
label, the more likely the block is to have the object labelypdated objects, and these clustered objects are used to feed
the temporal block-matchingwhere the neighbor condition information into the kalman filter trackers. In this process,
between consecutive frames is evaluated as a degree seferal trackers are associated with a compound object: The
overlapping between the block and its re-projection intéompound object tracker and the trackers of each object
the previous frame and finally thblock-color matching inside the compound object.
where the color likelihood of blocks is measured using the Thea posteriorestimated velocity supplied by each object
intersection of the color histograms of the block and its retracker is useful in the case of a split event, helping to dis-
projection to the previous frame. ambiguate which vehicles are associated with each detected
Using the energy function, the algorithm is able to validat¢éarget. Using the estimated velocity, an estimated block map
the projected block ma using the previous block map X is obtained and the correspondence matrix is obtained
X1, the actual detected targels and the object€, 1 using the block mapX; that is updated using the energy
tracked in time frame — 1. function.

(22)



Fig. 4. Vehicle detection and tracking on a real day-light urban scenario.Fig. 5. Vehicle detection and tracking on a real night urban scenario.
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