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Abstract

In order to ensure a safe and efficient driving, it is important to classify the

behaviors of the vehicles and to understand their interactions in typical traffic

scenarios. Not long ago, this burdensome task was performed only by human

operators at traffic control centers. However, the increasing number of available

cameras dictated the need for automatic traffic surveillance systems. In this

thesis, one specific roadway safety system will be addressed, focusing on the

monitoring of drivers’ behaviors through the analysis of the CCTV signal.

The presented work focus on the detection of dangerous behaviors in high-

ways in order to improve road safety. Two distinct solutions are proposed to

detect two of the most dangerous situations in highways: wrong way vehicles

and vehicles stopped on the road or on the hard shoulder. An immediate de-

tection of these dangerous behaviors could help prevent serious accidents by

warning the oncoming vehicles and the police. The proposed system aims at

automatically detecting these events, triggering an alarm on the highway traf-

fic telematic system, and, consequently, warning the human operator, who will

handle the situation.

In order to detect the vehicles in the image a segmentation process for out-

door scenarios based on background subtraction is presented. The proposed

system aims at robustly adapting itself to lighting variations and to work twenty

four hours a day. For this purpose, three different background models and dy-

namic thresholds update are used. It was also presented a shadow/highlight de-

tection algorithm based on normalized color cross-correlation to discard shadow

areas and blobs generated by lighting variations (moving clouds, artificial light

changes, etc.).

The stopped vehicle detection system proposed on this thesis has three main
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phases. First, the segmentation process previously referred is used to identify

all the vehicles in the scene. Second, it is verified if there are static pixels,

i.e., pixels segmented during a certain period of time with the same color. A

pixel color history cache analysis is used to identify the static pixels. Finally, a

temporal validation is applied to the blobs formed with those static pixels. If

the validation succeeds, an alarm is triggered in the traffic telematic system.

The wrong way vehicle detection system proposed on this thesis uses infor-

mation provided by an optical flow algorithm to estimate the motion direction

of the vehicles. Firstly, the orientation pattern of the vehicle’s motion flow is

modeled by a mixture of Gaussians. Then, there is a Detection Phase: it is ver-

ified, in each frame, if the motion direction of the vehicle matches the learned

motion direction model. On both phases, a Block Median Filtering is applied

to remove noisy flow vectors. Finally, a temporal validation is used to validate

the wrong way vehicle. If the validation succeeds, an alarm is triggered in the

traffic telematic system.

Several tests were performed on the proposed solutions in order to validate

its effectiveness. Tests performed in public datasets and several datasets from

Portuguese highways with different weather conditions and illumination changes

proved the robustness and the accuracy of the presented methodologies in de-

tecting anomalous situations in highways. Several tests were also performed on

site in some Portuguese highways during several months and good results were

obtained.

A real automatic traffic surveillance system was developed using the research

work presented on this thesis. This automatic traffic surveillance system is

currently being used in several Portuguese highways to automatically detect

vehicles circulating on the wrong direction and vehicles that pull over on the

road or on the hard shoulder.
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my parents José Monteiro and Maria Vaz - for having always provided me with

all the types of support a son can wish.

And, finally, I would like to thank my girlfriend Cristina for helping me revise

the previous versions of the thesis and, above all, for her incredible patience and

endless support during these years of our life.

Thank you to you all!

6





Contents

1 Introduction 18

1.1 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

I Robust Outdoor Vehicle Detection 24

2 Foreground/Background Segmentation 26

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Segmentation Process . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.1 Background Modeling . . . . . . . . . . . . . . . . . . . . 40

2.2.2 Online Background Model Update . . . . . . . . . . . . . 42

2.2.3 Pixel-level Analysis . . . . . . . . . . . . . . . . . . . . . . 46

2.2.4 Region-level Analysis . . . . . . . . . . . . . . . . . . . . . 48

2.2.5 Frame-level Analysis . . . . . . . . . . . . . . . . . . . . . 50

2.2.6 System Thresholds . . . . . . . . . . . . . . . . . . . . . . 51

2.3 Shadow and Highlight Detection . . . . . . . . . . . . . . . . . . 56

2.3.1 Shadow Detection Algorithms . . . . . . . . . . . . . . . . 57

2.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . 64

2.4 Image Flow Estimation . . . . . . . . . . . . . . . . . . . . . . . 68

2.4.1 Optical Flow Estimation . . . . . . . . . . . . . . . . . . . 69

2.4.2 Features to Track Selection . . . . . . . . . . . . . . . . . 71

2.4.3 Experimental Results and Conclusions . . . . . . . . . . . 72

2.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.5.1 Segmentation Process Robustness and Accuracy . . . . . 76

8



2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

II Automatic Incident Detection 84

3 Wrong Way Vehicle Detection 86

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.2 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . 87

3.3 Vehicle’s Motion Estimation . . . . . . . . . . . . . . . . . . . . . 88

3.3.1 Block Median Filtering . . . . . . . . . . . . . . . . . . . 88

3.4 Traffic Flow Direction Learning . . . . . . . . . . . . . . . . . . . 90

3.5 Wrong Way Vehicle Detection . . . . . . . . . . . . . . . . . . . . 93

3.5.1 Temporal Validation . . . . . . . . . . . . . . . . . . . . . 94

3.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.6.1 Tests Performed On-Site . . . . . . . . . . . . . . . . . . . 95

3.6.2 Tests Performed in Datasets of Highway Scenarios . . . . 97

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4 Stopped Vehicle Detection 106

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3 Static Pixels Identification . . . . . . . . . . . . . . . . . . . . . . 109

4.3.1 Cache Update . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3.2 Static Pixels Detection . . . . . . . . . . . . . . . . . . . . 111

4.4 Stopped Vehicle Validation . . . . . . . . . . . . . . . . . . . . . 112

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.5.1 Tests Performed in Public Datasets . . . . . . . . . . . . . 113

4.5.2 Tests Performed On-Site . . . . . . . . . . . . . . . . . . . 114

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

III Automatic Traffic Surveillance System 122

5 AVISAR Project 124

9



5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.2 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.3 System Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.4 Scene Masks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.5 Online Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

IV Final Notes 134

6 Conclusion 136

6.1 Achieved Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

10





List of Tables

2.1 Comparative results of the tests performed with texture-based

algorithm and the color-based algorithm to detect shadowed pixels. 67

2.2 Composition of the challenging datasets available at VSSN 2006

website and used to validate the proposed segmentation algorithm. 77

3.1 Performance of the proposed wrong way vehicle detection system

in some surveillance cameras in Portuguese highways. . . . . . . 97

3.2 Datasets used to validate the proposed wrong way vehicle detec-

tion system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.3 Performance of the proposed wrong way vehicle detection system

in test datasets in Portuguese highways. . . . . . . . . . . . . . . 104

4.1 Public datasets used to validate the stopped vehicle detection

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.2 Performance of the proposed stopped vehicle detection system in

some public datasets. . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.3 Scenarios used to perform the on-site tests to the proposed stopped

vehicle detection system. . . . . . . . . . . . . . . . . . . . . . . . 117

4.4 Performance of the proposed stopped vehicle detection system

tested on-site in some outdoor scenarios. . . . . . . . . . . . . . . 118

12





List of Figures

1.1 Traffic Control Center at Carcavelos, Portugal. . . . . . . . . . . 20

2.1 Challenging situations for a segmentation process. . . . . . . . . 29

2.2 Adopted color model for segmentation. . . . . . . . . . . . . . . . 35

2.3 Flowchart of the proposed segmentation process – pixel-level anal-

ysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Initial background model estimation. . . . . . . . . . . . . . . . . 43

2.5 Initial background model estimation with traffic jam. . . . . . . . 44

2.6 Background model adaptation over time. . . . . . . . . . . . . . . 47

2.7 A sudden illumination change in a tunnel scenario. . . . . . . . . 51

2.8 Three consecutive frames of an sudden lighting change in a tunnel

scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.9 The camera’s AGC changes the image brightness because of the

truck that is coming towards the camera. . . . . . . . . . . . . . 52

2.10 Segmentation process in a typical outdoor scenario. . . . . . . . . 53

2.11 Example of a shadow problem in an outdoor scenario, the ve-

hicle’s shape and area change significantly. a) Bounding box of

the vehicles detected with the proposed segmentation system. b)

Foreground pixels detected with the proposed segmentation sys-

tem (green pixels). . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.12 The geometric relationship of a moving cast shadow. . . . . . . . 58

2.13 The conical representation of the HSV color space. . . . . . . . . 62

2.14 The representation of the chromatic plane of the hsL color space. 63

2.15 Scenarios used to compare the texture-based algorithm with the

color-based algorithm to detect shadowed pixels. . . . . . . . . . 65

14



2.16 Shadow detection in outdoor scenarios. Left column – Captured

frame; Middle column – Color-Based shadow detection; Right

column – Texture-Based shadow detection. The shadowed pixels

are identified with the red color. . . . . . . . . . . . . . . . . . . 66

2.17 Sudden illumination change detection in a tunnel scenario. a) two

consecutive frames of the sudden illumination change; c) Color-

Based shadow detection algorithm; d) Texture-Based shadow de-

tection algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.18 Optical flow estimation with the presented methodology. . . . . . 74

2.19 Segmentation process in a typical outdoor scenario. . . . . . . . . 75

2.20 Segmentation process in a typical outdoor scenario. . . . . . . . . 79

2.21 Segmentation process in a typical outdoor scenario. . . . . . . . . 79

2.22 Segmentation process in a tunnel scenario. . . . . . . . . . . . . . 80

2.23 Segmentation process in a rainy situation. . . . . . . . . . . . . . 80

2.24 Segmentation process with rain drops in the camera’s lens . . . . 81

2.25 Comparative results of the proposed segmentation process. . . . 82

3.1 Results of the Block Median Filtering to reduce the disturbance

in the optical flow estimation. a), c) e), and g) output of the

estimated optical flow. b), d), f), and h) result of the block

median filtering. Note that in h) not all the wrongly detected

vectors are filtered. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.2 Flowchart of the traffic flow direction learning process. . . . . . . 90

3.3 Traffic flow direction learning process: a), b) and c) show the

evolution of the orientation pattern modeled by the first Gaussian

of the MoG on a highway scenario. d) the result of the learning

process after the model weight filtering. . . . . . . . . . . . . . . 91

3.4 Traffic flow direction learning process: a), b) and c) show the

evolution of the orientation pattern modeled by the first Gaussian

of the MoG on a highway scenario. d) the result of the learning

process after the model weight filtering. . . . . . . . . . . . . . . 92

3.5 Flowchart of the proposed wrong way drivers detection system. . 93

3.6 Some examples of false optical flow estimation. . . . . . . . . . . 95

15



3.7 Sites in Portuguese highways used to validate the proposed wrong

way vehicle detection system. . . . . . . . . . . . . . . . . . . . . 96

3.8 Wrong way vehicle detection in a typical outdoor scenario. The

vehicle is reversing in a lane disabled for maintenance. . . . . . . 97

3.9 Wrong way vehicle detection in a typical outdoor scenario. The

vehicle is reversing in the hard shoulder. . . . . . . . . . . . . . . 98

3.10 Wrong way vehicle detection in a tunnel scenario. The vehicle is

reversing in the hard shoulder. . . . . . . . . . . . . . . . . . . . 99

3.11 Wrong way vehicle detection at night. The vehicle is reversing in

a lane disabled for maintenance. . . . . . . . . . . . . . . . . . . 100

3.12 Real wrong way vehicle detection at night. . . . . . . . . . . . . . 100

3.13 Real wrong way vehicle detection. . . . . . . . . . . . . . . . . . 101

3.14 Some situations of false wrong way vehicles detected in the per-

formed tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.15 Wrong way vehicle detection under occlusion in a simulated event.104

3.16 Miss detection of wrong way vehicle due to image noise. . . . . . 104

4.1 Flowchart of the proposed stopped vehicles detection process. . . 109

4.2 Flowchart of the pixel history cache data structure used to store

the pixels color history and subsequently used to identify the

static pixels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3 Some examples of stopped vehicle detection in some Portuguese

highways scenarios. a) tunnel entrance; b) stopped vehicle with

the hazard warning lights turned on; c) tunnel scenario; d) stopped

vehicle on the left side road (the one on the right was validated

before); and e) bridge scenario. . . . . . . . . . . . . . . . . . . . 119

4.4 Example of stopped vehicle detection with occlusions. . . . . . . 120

4.5 False stopped vehicle detection. The areas where the vehicle’s

lighting is projected are segmented as foreground. For each pixel

of those areas, the most frequent color is white and those pixels

are classified as static. . . . . . . . . . . . . . . . . . . . . . . . . 121

5.1 Flow chart of the developed Automatic Traffic Surveillance Sys-

tem prototype. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

16



5.2 Integration of the ATS System library with ATS Adapter. . . . . 128

5.3 Integration of the ATS System in the Brisa surveillance cameras

network and communication with iBrisa. . . . . . . . . . . . . . . 129

5.4 Two examples of scenarios with non wanted roads to analyze. a)

Two way road on the left side of the highway; b) Bridge over the

highway. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.5 Two examples of scene processing mask. . . . . . . . . . . . . . . 130

5.6 Two examples of scene lanes identification mask. . . . . . . . . . 131

5.7 Two examples of scene learned flow patterns mask. . . . . . . . . 131

5.8 Real-time processing images of a set of sites. . . . . . . . . . . . . 132

5.9 Real-time processing images of a site with detailed information. . 132

5.10 List of wrong way vehicle events detected for a site. . . . . . . . 133

5.11 Stored data of a wrong way vehicle event. . . . . . . . . . . . . . 133

17



Chapter 1

Introduction

Over the last decades, a special attention has been given to Intelligent Trans-

portation Systems (ITS). The increasing research and development in this area

has been strongly motivated by urbanization, changes in population density,

and by the significant increase in the number of vehicles. Within the scope

of ITS technologies are topics like enhancing safety, efficiency of the surface

transportation system, increasing mobility, and environmental sustainability.

The associated technologies can vary from basic management systems - such as

car navigation; traffic signal control systems; variable message signs; automatic

number plate recognition or speed cameras - to monitoring applications, such

as security CCTV systems; weather information; etc.

The increase in the number of vehicles circulating on the roads and the

subsequent increase of the number of roads led to the necessity of creating active

systems of roadway safety. In this thesis, one specific roadway safety system

will be addressed, focusing on the monitoring of drivers’ behaviors through the

analysis of the CCTV signal.

Lately, one of the most significant efforts in ITS research has been the de-

velopment of visual surveillance systems that could help reduce the number of

traffic incidents and traffic jams in urban and highway scenarios. Several differ-

ent types of devices, including loop detectors, sensors, and cameras, have been

employed in traffic monitoring systems. Vision-based analysis systems have be-

come popular in transportation management due to their capability to extract
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very rich information on road traffic compared to the sensor-based systems.

Typically, the detection of abnormal situations based on video surveillance

in highways is performed by human operators at traffic control centers (see

Fig. 1.1). Tickner et al. [3] demonstrated that the level of attention of a

human operator and his accuracy of incident detection decreases over time.

Nowadays, this problem has become more complex because of the significant

increase in the number of surveillance cameras along the highways. Therefore,

robust automatic traffic surveillance systems are required to accurately detect

abnormal events in highways. In order to create such system, it is necessary to

classify vehicles’ behaviors and to understand their interactions in typical traffic

scenarios. Several vision-based automatic traffic surveillance systems have been

proposed [27, 20, 11, 47, 45, 54, 18, 19, 73] and these demonstrate a good

potential for highway surveillance applications. Nowadays, vision-based traffic

surveillance systems are widely used in ITS. The goal of a traffic surveillance

system is to extract traffic information, such as vehicle count, traffic events,

and traffic flow, which play an important role in traffic analysis and traffic

management. However, it is challenging to maintain detection accuracy at all

time since vision-based processing is sensitive to environmental factors such as

weather conditions, shadows, lighting variation, etc.

In the present thesis, some vision-based solutions are proposed to help hu-

man operators in the hard task of detecting abnormal situations in highways.

The presented solutions are part of an Automatic Traffic Surveillance (ATS) sys-

tem that is being developed to be applied to the surveillance cameras of Brisa’s

highways1. This ATS system is divided into two main parts: a) an Automatic In-

cident Detection (AID) system and b) an Automatic Traffic Monitoring (ATM)

system. The aim of the AID system is to detect and track potentially anomalous

traffic events in highways. By anomalous events it is meant the detection of ve-

hicles that stop on highways or on hard shoulders, vehicles driving on the wrong

direction, vehicles constantly switching between lanes, low speed vehicles, and

also high speed vehicles. The aim of the ATM system is to provide some useful

statistical information about the traffic. Some of the statistical features to be
1Brisa – Auto-estradas de Portugal S.A. (www.brisa.pt) is the largest transport infrastruc-

ture company in Portugal. It has about 550 surveillance cameras along the 1,100-kilometer

highway network.

19



Figure 1.1: Traffic Control Center at Carcavelos, Portugal. The surveillance of

the highways operated by Brisa all over the country is performed in this Traffic

Control Center.

retained are: the number of vehicles circulating on each of the lanes, vehicles’

average speed, road occupancy rate, etc.

The presented work focus on the detection of dangerous behaviors in high-

ways in order to improve road safety. Two distinct solutions are proposed to

detect two dangerous situations in highways: a) wrong way vehicles; and b)

stopped vehicles on the road or on the hard shoulder. An immediate detection

of these dangerous behaviors could help prevent serious accidents by warning

the oncoming vehicles (via traffic telematic systems or radio announcements)

and by warning the police. The proposed system aims at automatically detect-

ing these events, triggering an alarm on the highway traffic telematic system,

and consequently warning the human operator, who will handle the situation.

The system must be robust to illumination changes, adverse weather conditions,

small camera movements, being able to robustly track vehicles with anomalous

behaviors against occlusions and crowded situations.
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1.1 Thesis Overview

This thesis is divided into four main parts:

Part I: Robust Outdoor Vehicle Detection – Presentation of a robust

segmentation process for outdoor scenarios based on background subtraction.

Three different background models are used to model the scene variations and

to deal with illumination changes. In order to minimize false positive detections

in the the segmentation process, two different shadow detection algorithms are

presented and tested. An optical flow algorithm is also used to estimate the

vehicle’s motion and to validate blobs previously detected in the segmentation

process. Several results of validation experiments performed in outdoor scenar-

ios are shown.

Part II: Automatic Incident Detection – Two different solutions are

presented to detect dangerous behaviors on highways. These dangerous behav-

iors can be either vehicles stopped in the road or in the hard shoulder and/or

wrong way vehicles.

The proposed methodology to detect stopped vehicles has three main phases.

Firstly, there is the segmentation of all vehicles in the scene. Secondly, it is

verified if there are any static pixels segmented over a certain period of time.

Those static pixels are then grouped into blobs. The static pixels identification

is based on a pixel history cache analysis. Finally, a blob temporal validation

is applied to discard false positives. If the validation succeeds, an alarm is

triggered in the traffic telematic system.

The solution presented to detect wrong way drivers in highways has three

main stages. Firstly, the orientation pattern of vehicles motion flow is learned

and modeled by a mixture of Gaussians (Learning Phase). Then, there is a

Detection Phase, where it is verified, in each frame, if the direction of the areas

where movement was detected matches the learned direction model. On both

phases, a Block Median Filtering is applied to the motion flow in order to remove

noisy flow vectors. Finally, a temporal validation is used to validate the object

as a real wrong way vehicle. If the validation succeeds, an alarm is triggered.

Several detection events in outdoor scenarios and validation results are pre-

sented.

Part III: Automatic Traffic Surveillance System – An Automatic
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Traffic Surveillance system prototype based on algorithms developed on this

thesis is presented. This system was integrated in the Telematic Management

System of Brisa. Mechanisms of online analysis of false positives and miss

detections were developed using web technologies. This web tool is also used to

perform real-time analysis of the ATS system.

Part IV: Final Notes – The last part of the thesis contains a general

conclusion and discussion. List of publications made during the research work

on this thesis is also presented.
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Chapter 2

Foreground/Background

Segmentation

2.1 Introduction

Background/foreground segmentation is an essential component of most video

surveillance systems involving object detection and tracking. Such systems re-

quire both robustness to lighting variation and computer feasibility. Some ex-

amples of applications that use foreground segmentation techniques are video

surveillance, gesture recognition, object tracking, pattern classification, quality

control, object-based video encoding, satellite images analysis, medical images

analysis, etc.

This chapter is dedicated to the foreground segmentation problem applied

to robust outdoor vehicles detection. It is important to remember that motion

segmentation is never meant to be a goal on its own. The output of the seg-

mentation process is the basis for subsequent systems like traffic monitoring and

automatic incident detection systems. Therefore, the segmentation process has

a very serious responsibility: the performance of the overall system is directly

affected by the performance of the segmentation process.

Although a lot of research has been done in the field of foreground segmen-

tation, a lot of difficulties have still to be considered in this area, especially

how to obtain good results under dynamic environments, changing situations,
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and different weather conditions. Some challenging situations are illustrated

in Fig. 2.1. In outdoor scenes, the main challenges faced by the foreground

segmentation system are:

Quick illumination changes Quick illumination changes completely alter the

color characteristics of the background, thus increasing the deviation be-

tween background pixels and the background model in color or intensity.

This results in a drastic increase in the number of falsely detected fore-

ground regions and, in a worst case scenario, the whole image appears as

foreground. This shortcoming makes surveillance under partially cloudy

days almost impossible with high false positive rates.

Initialization with moving objects If moving objects are present during ini-

tialization, then part of the background is occluded by moving objects.

Therefore, many algorithms require a scene with no moving objects dur-

ing initialization. This situation imposes serious limitations on systems to

be used in high traffic density areas.

Shadows Objects cast shadows that might also be classified as foreground due

to the illumination change in the shadow region. This kind of problem can

change the vehicle shape or, in a worst scenario, vehicles can be merged

into a single region.

Moving background objects Background objects like swaying trees or flut-

tering flags are very difficult to include in the background model since

each background pixel can be modeled by many different colors in this

situation. Camera vibration can also be associated with this problem.

Weather conditions A surveillance system working in an outdoor scenario

has to deal with different weather conditions like rain, fog, dense moving

clouds, snow, etc. Adverse weather conditions can generate low contrast

images and moving background objects like raindrops or snowflakes. The

wet road can also pose a problem for the segmentation process, because

of the vehicles’ lights reflection.

Image quality The system should be able to work with every type of surveil-

lance cameras available, adapting itself to the camera acquisition condi-
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tions.

Automatic gain control With the adjustment of the camera’s AGC, the bright-

ness of the whole image changes and the background pixels are classified

as foreground.

Work 24/7 It is demanding for an outdoor segmentation system to be able to

work 24 hours a day, 7 days a week. The scene model should robustly

adapt itself to variations throughout time.

Computational cost A segmentation process can not demand a high com-

putational power, because this would pose a problem for the integration

into a real-time tracking system and/or for its use as an event detection

system.

Several algorithms have been proposed to deal with the above mentioned

problems in outdoor scenarios. However, finding a solution that robustly deals

with all of these situations still a demanding and hard task.

2.1.1 Related Work

Over the last decades, both foreground analysis and foreground segmentation

have become very important for a wide range of applications. This was only

possible because of recent developments, such as the ability to process com-

plex algorithms in real-time due to the computational power, and the available

memory of recent computers. Most of the existing solutions either make strict

assumptions about the scene or simply fail in outdoor scenarios when handling

moving background regions and abrupt lighting variations resulting from moving

clouds or camera’s automatic gain control.

Several different segmentation approaches have been proposed to deal with

problematic situations. Background subtraction based approaches are the most

discussed pixel-wise techniques for foreground segmentation. Even though they

are different, most background subtraction methodologies share common proce-

dures: it is assumed that the observed image sequence, It(φ), is made of a fixed

background model, B(φ), in front of which moving objects are observed. If one

assumes that a moving object at frame t has a color distribution different from
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(a) (b)

(c) (d)

(e) (f)

Figure 2.1: Some challenging situations for a segmentation process in outdoor

scenarios: a) Vehicles’ lights reflected off the wet road; b) Fog over a bridge;

c) Rain drops in the camera lens; d) Low contrast image; e) Sun light in the

direction of the camera; and f) Insects in the camera lens
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the one observed in B(φ), the principle of background subtraction methods can

be defined by Eq. 2.1, where MF is the foreground mask at frame t, diff is a

distance between It(φ) and B(φ) at the pixel φ, and τ is a threshold.

MF =





1 if diff(It(φ), B(φ)) > τ

0 otherwise
(2.1)

These methodologies can be parametric or non-parametric, and the analy-

sis can be pixel-based, region-level, or a combination of these different analysis

methods. These methodologies have four main discussion points: a) B(φ) mod-

ulation; b) the procedure to update B(φ); c) determining the thresholds (τ) used

to classify a pixel as foreground or background; d) and the foreground pixel val-

idation criteria. Some state-of-the-art foreground segmentation algorithms will

be described below.

The method proposed by Haritaoglu et al. [33] uses only grayscale infor-

mation to detect foreground pixels. Firstly, a background model is generated

with N frames, in which a pixel can have three values: minimal intensity (m),

maximal intensity (M) and maximal difference value of two successive frames.

The difference images are calculated with It(φ) and both the It
m(φ) image and

It
M (φ) image. These images are used for the classification in which the fore-

ground pixels are given if the difference values are higher than the values of the

maximal inter frame difference. After the segmentation procedure, some post

processing steps are also applied to reduce noise. Furthermore, the classified

background pixel are then used to update the background model.

In [38], Horprasert et al. assume that luminance and chrominance have to

be separated from each other on the RGB color space by generating a new

color model. Thus, there is an expected chromaticity line in which the pixel

value should be kept. The expected chromaticity is obtained by the arithmetic

means of each pixel RGB values calculated over a number of background im-

ages. The distortion from this line is given as both chromaticity and brightness

distortion being generated by standard deviation. With these distortions, sev-

eral thresholds are determined to classify the pixel in one of the four possible

classes: foreground, background, shadowed, and highlighted background.

In [28], François et al. assume that in the background only very slow global
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changes can occur and, therefore, the color values of each pixel build a sphere

cluster in the RGB color space. With this assumption, a background model as a

Gaussian distribution is generated by considering the mean value and standard

deviation for each pixel. In this method, the HSV color space is used instead of

the RGB. The current image,It(φ), is subtracted from the mean value model

and the obtained difference values of each pixel are then thresholded with a

value proportional to the standard deviation model. Moreover, an update of

the background model is also given.

The system proposed by Jabri et al. [41] uses both color and edge informa-

tion to perform the foreground segmentation. The background model is trained

for both mentioned parts by calculating the mean and standard deviation for

each pixel, φ, of each color channel. With the subtraction of the incoming cur-

rent frame, It(φ), for each channel, confidence maps are generated for both color

and edge information. After that, a combination of the two maps are utilized

by taking its maximum values. Finally, an hysteresis thresholding is used to

obtain the foreground mask.

Cavallaro et al. [16, 17] proposed a methodology to detect foreground pixels

based on Y CbCr color space. For each channel of Y CbCr color space an image

differencing between the background, Bt(φ), and the current image, It(φ), is

performed. An edge detection algorithm based on Sobel operator is computed

using each partial result. Then, the three sub-results are fused together. A

post processing step using morphological operations is used to connect the edge

information.

Hong et al. [36] also models the background, but this time both well-known

RGB and normalized rgb color are applied. As mentioned in previous meth-

ods, the mean and standard deviation are used again and these are estimated

for each color component. Each color representation has its own classification

procedure in which the current image, It(φ), is firstly converted for each color

representation. Within each color space the pixel can be classified into four

categories: a) foreground, b) foreground with shadow, c) background, and d)

background with shadow.

Some other methodologies to detect foreground pixels will be described be-

low. These more relevant methodologies are presented in order to introduce the
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proposed algorithm to detect foreground pixels.

Mixture of Gaussians

The existing background modeling methods can be classified as either single-

layer or multi-layer. Single layer methods obtain a model for the color distri-

bution of each pixel, based on past observations. Usually, a single Gaussian

is used to model the statistical distribution of a background pixel, being up-

dated through a blending approach. Stauffer and Grimson [71] modeled the

background with a mixture of Gaussian models (MoG). Instead of explicitly

modeling every pixel values as one particular type of distribution, the back-

ground is obtained by a pixelwise mixture of Gaussian distributions to support

multiple backgrounds. In this process, each pixel’s recent history, {X1, ..., Xt}
is modeled by a mixture of K Gaussian distributions. The probability density

function of observing a certain pixel X value is given by Eq. 2.2 where K is the

number of distributions, ωi,t is an estimate of the weight of the ith Gaussian

in the mixture at the time t, µi,t is the mean value of the Gaussian ith in the

mixture at the time t, Σi,t is the covariance matrix of the ith Gaussian in the

mixture at the time t, and where η is a Gaussian probability density function

and is given by Eq. 2.3.

P (Xt) =
K∑

i=1

ωi,t ∗ η(Xt, µi,t, Σi,t) (2.2)

η(X, µ, Σ) =
1√

(2π)n|Σ|e
− 1

2 (X−µ)T Σ−1(X−µ) (2.3)

K is chosen taking into account the available memory, the computational

power, and the complexity of the data to be modeled. Also, for computational

reasons, the covariance matrix is given by Eq. 2.4. This assumes that the three

color channels are independent and have the same variance. This assumption

allows us to avoid a costly matrix inversion at the expense of some accuracy.

Σk,t = σ2
kI (2.4)

In order to update the model with a new pixel value, a standard method

for maximizing the likelihood like an expectation maximization algorithm could
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be used. However, it requires a high computational power. Therefore, a K-

means approximation is used for the updating procedure. First, the distance

in standard deviations with respect to each Gaussian is computed. When the

distance to the closest Gaussian is less than 2.5 standard deviations, the weight

(Eq. 2.5), mean (Eq. 2.6) and variance (Eq. 2.7) of that Gaussian is updated,

where α is the learning rate and Mk,t is 1 for the match model and 0 for the

remaining models. For the remaining Gaussians, only the weight is updated,

decreasing the prior ωk,t of those Gaussians. When there is no match with

any of the Gaussians, the Gaussian with the smallest weight ωt is replaced

by a new Gaussian, with the sample value as its mean, preset initial value as

variance and a very low prior weight ωt. After this approximation, the weights

are renormalized.

ωk,t = (1− α)ωt−1 + αMk,t (2.5)

µt = (1− ρ)µt−1 + ρXt (2.6)

σ2
t = (1− ρ)σ2

t−1 + ρ(Xt − µt)T (Xt − µt) (2.7)

where

ρ = αη(Xt|µk, σk) (2.8)

To obtain the background model it is necessary to select the correct portion

of the mixture model that best represents the scene background. First, the

Gaussians are ordered by the value of ω/σ. Then, the first B distributions are

chosen as the background model (Eq. 2.9), where T is a measure of the minimum

portion of the data that should be taken into account by the background. A

pixel is classified as foreground if it has a log-likelihood lower than a given

threshold with respect to the background model B.

B = argminb

(
b∑

k=1

ωk > T

)
(2.9)
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Codebook Model

A methodology to segment objects in a non-static background based on a pixel

color history cache was proposed by Kim et. al. [46]. Just like the methodology

presented in Sec.2.1.1, this segmentation algorithm uses a multi-layer back-

ground model. Each pixel’s sample background values are quantified into code-

books. These are a compressed way of the background model for a long image

sequence. Each background pixel model (codebook) is represented by one or

more codewords. Each codeword represents a distinct mode of a background

pixel.

Let X be a training sequence for a single pixel consisting of N RGB-vectors:

X = {x1, x2, ..., xN}. Let C = {c1, c2, ..., cL} represent the codebook for the

pixel consisting of L codewords. Each pixel has a different codebook size based

on its sample variation.

Each codeword ci, i = {1, ..., L} consists of an RGB vector vi = (R̄i, Ḡi, B̄i)

and a 6-tuple auxi = 〈Ǐ , Î , fi, λi, pi, qi〉. The tuple auxi contains the bright-

ness values and the temporal variables described below:

Ǐ , Î the minimum and the maximum brightness, respectively, of

all pixels assigned to this codeword

f the frequency of the codeword

λ the maximum negative run-length defined as the longest

interval during the training period that the codeword has

not recurred

p, q the first and the last access times, respectively, that the

codeword has occurred

During the codebook construction, sample pixels are considered in chrono-

logical order . The sample is first compared to the existing codewords to look for

a match. A match occurs when the sample color and brightness distortion are

within the codeword parameters. The codeword matching area is represented by

a cylinder in RGB color space (Fig. 2.2). If a match occurs, the RGB values of

the matching codeword are updated, as well as the values of the 6-tuple. If no

match is obtained, a new codeword is initialized with the sample RGB values.

For an input pixel xt = (R, G, B) and a codeword ci where vi = (R̄i, Ḡi, B̄i)
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Figure 2.2: Color model used – a separate evaluation of color and brightness

distortion.

the color distortion is given by Eq. 2.10 where p2 is given by Eq. 2.11. This

color distortion measure can be interpreted as a brightness-weighted version in

the normalized color space.

colordist(xt,vi) = δ =
√
‖xt‖2 − p2 (2.10)

p2 = ‖xt‖2 cos2 θ =
〈xt,vi〉2
‖vi‖2

(2.11)

In order to allow brightness changes in detection , statistics of Ǐ and Î

are stored, which represent the minimum and the maximum brightness of all

pixels assigned to a codeword. In order to intrinsically deal with shadows and

highlights, brightness can vary within a certain range. The range [Ilow,Ihi
] for

each codeword is defined by Eq. 2.12 where α < 1 and β > 1. The logical

brightness function is defined by Eq. 2.13.

[Ilow, Ihi
] =

[
αÎ, min

{
βÎ,

Ǐ

α

}]
(2.12)

brightness(I, 〈Ǐ , Î〉) =





true if Ilow ≤ ‖xt‖ ≤ Ihi

false otherwise
(2.13)

Since the training set X can contain both background and foreground pixels

it is necessary to discard the foreground pixels from the model. A temporal
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filtering procedure is performed to obtain the background model. It is assumed

that true background pixels (static pixels and moving background pixels) are

quasi-periodic, i.e., their pixel values should repeat over time. The temporal

filtering process consists of removing the pixel codewords with a large maximum

negative run-length λ. Let M (Eq. 2.14) and TM denote the background model

(which is a refined codebook after temporal filtering) and the threshold value,

respectively.

M = {cm|cm ∈ C ∧ λm ≤ TM} (2.14)

Unlike MoG segmentation process (Sec. 2.1.1) which computes probabilities

using costly floating points operations, this method does not involve probability

calculation. The distance from the sample to the nearest cluster mean is com-

puted. The pixels classification, FGS(x), of an incoming pixel value x is defined

by Algorithm 1, where ε is the detection threshold. The pixel is detected as

foreground if no acceptable matching codeword exists. Otherwise it is classified

as background.

Algorithm 1 Segmentation Process

1: x = (R, G, B), I ← √
R2 + G2 + B2

2: For all codewords in M (see Eq. 2.14), finding the codeword cm that matches

x based on the following conditions:

• colordist(x, cm) ≤ ε

• brightness(I, 〈Ǐ , Î〉) = true

3: Update matched codeword

4: Pixel classification:

FGS(x) =





foreground if there is no match

background otherwise

Foreground Segmentation Based on Background Suppression

A segmentation process based on background suppression was presented by

Calderara et al. in [15]. This segmentation process is based on a system called
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SAKBOT (Statistical And Knowledge-Based Object Tracker) presented by Cuc-

chiara et al. in [22] and it includes new techniques for improving reliability in

complex scenes.

The initial background model is obtained using a background bootstrapping

technique. In this approach, the image is divided into blocks of 16 × 16 and

selectively updates the background model with a block whenever a sufficiently

high number of pixels within the block are not in motion. The motion is evalu-

ated with a thresholded single difference between two consecutive frames. This

learning process stops when every block is considered “stable” for two consecu-

tive frames. During the processing period, a selective background model update

is performed using a temporal median. Only pixels classified as foreground are

updated.

In order to identify the foreground pixels a background differencing is used.

The difference between the current image It and the background model Bt is

computed using Eq. 2.15, where iT is the 1× 3 identity vector.

Mt(x, y) =
(It(x, y)−Bt(x, y)).iT

3
(2.15)

Mt(x, y) is the foreground image and contains the gray-level information of

the difference. Two different local thresholds are used to binarize Mt(x, y): a

low threshold Tlow and a high threshold Thigh. Let bp(x, y) be the value at

position p inside the ordered circular buffer b of pixel (x, y) and b k+1
2 +1 the

median value. This vector is the same that is used to update the background

model. Thresholds are computed using Eq. 2.16 and Eq. 2.17, where λ is a

fixed multiplier, while l and h are fixed scalar values and h > l.

Tlow(x, y) = λ
(
b k+1

2 +l(x, y) − b k+1
2 −l(x, y)

)
(2.16)

Thigh(x, y) = λ
(
b k+1

2 +h(x, y) − b k+1
2 −h(x, y)

)
(2.17)

A pixel is marked as foreground in Ft if it is segmented with Tlow and it

is spatially connected to at least on pixel segmented with the Thigh threshold.

A shadow detection algorithm described in [22] is used to identify and discard

shadowed pixels from the foreground mask. This algorithm assumes that the
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shadow darkens the underlying background, without significantly changing its

color. This algorithm is described in detail in Sec. 2.3.1. Finally, the list of

moving objects at the time t is extracted from Ft using a two-pass labeling

algorithm.

After the blob detection and the shadow removal, a region-level analysis is

performed in order to remove all moving objects generated by small motion of

the background. This validation is performed accounting for joint contribution

coming from color and gradient information. The gradient is computed with

respect to both spatial and temporal coordinates. An overall validation score

is computed for each blob. This value is then thresholded and, if it is below

the threshold, the blob is discarded and its pixels are marked as belonging to

background.

Adaptive Multi-background Modeling

In [14], Boult et al. presented a system to detect and track non cooperative

targets under non stationary environments. This system is denoted as Lehigh

Omnidirectional Tracking System (LOTS). This algorithm uses two gray level

background images: the primary background BP and the secondary background

BS . This allows the algorithm to cope with intensity variations due to noise

or fluttering objects, moving in the scene. Both BP and BS are updated via

temporal blending to allow them to track slow lighting changes. In order to

deal with “ghosts” generated by this blending process, a third background is

used. This third background is called old-image and it is not updated via the

blending model. This background is a copy of an image from somewhere between

9000-18000 frames ago.

Just like in [15], foreground objects are identified using two thresholds, (Tl

and Th). During the thresholding process (threshold-with-hysteresis), a lower

resolution image of those pixels above the threshold is created. Each pixel in

the parent image (low resolution image) maintains a count of how many of

its associated children (high resolution pixels) were above the threshold. The

resolution is reduced by a factor of four in each direction. A connected com-

ponent analysis is performed to identify the foreground areas and to group the

segmented pixels. To speed this precess up, the connected component analysis
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is applied to the parent image. This resolution reduction fills small gaps as

well. Even though it is not as “uniform” as the morphological processing, it is

considerably faster. This thresholding with foreground pixel grouping is called

quasi-connected components (QCC) analysis.

Finally, a region-level analysis is performed to remove noise regions. Three

different processes are used to validate the detected blobs: area analysis, light-

ing normalized analysis and “ghost” regions detection. The area region analysis

is used to filter blobs with small areas, these blobs are considered noise. The

lighting normalized analysis is used to discard blobs generated by shadows or

highlights. The threshold-with-hysteresis is aplied again to each blob, but only

the primary background is analyzed. The current frame and the background

model are normalized in the blob position before this process. The third clean-

ing phase is used to verify if the foreground blob is a “ghost”. This is done by

performing the threshold-with-hysteresis comparison against an intensity nor-

malized version of the old image.

2.2 Segmentation Process

Taking into account the problems listed previously, in this section, a robust seg-

mentation process for outdoor scenarios is presented. The proposed system aims

at robustly dealing with different weather conditions, illumination changes, non-

static background objects, shadows and image noise. This system was inspired

in LOTS segmentation process (see Sec. 2.1.1), but with some improvements to

increase robustness to outdoor scenarios and to work 24 hours a day, 7 days a

week. The system requirements and its explanation were presented in detail in

Sec. 2.1.

This segmentation process uses a background subtraction based methodol-

ogy to identify the objects in the image. Two different background models are

used to model the background scenario; one to model the static background

objects and the other to model the non-static background objects. In order to

avoid background model corruption due to integration of pixels mis-classified

as background, a third background model is also used. This third model is ob-

tained by a median process of n frames with a ∆ frames interval. Two distinct
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Figure 2.3: Flowchart of the proposed segmentation process – pixel-level anal-

ysis.

thresholds are used: a per-pixel threshold for a robust adaptation to the scene

variations during the day, and a global threshold, that is the minimum value,

to eliminate camera noise, and scenario features, like swaying trees and camera

pole vibrations. The global threshold is estimated in the system initialization by

the analysis of the scenario variations. A shadow/highlight detection algorithm

based on cross-correlation is also used to discard blobs or parts of blobs gener-

ated by lighting variation (moving clouds, artificial light changes, etc.). Blobs

are validated at a region-level analysis, object shape and size, optical flow, and

consistency over time are used to validate the segmented blobs. In order to deal

with abrupt variations (e.g.: artificial lighting switching) a frame-level analysis

is performed. Thus, the system can quickly adapt itself to scenario changes. The

main parts of the methodology will be described in detail below. A flowchart of

the segmentation process is illustrated in Fig. 2.3.

2.2.1 Background Modeling

In order to achieve a good segmentation in an outdoor environment it is nec-

essary to have a background model that considers all scenes’ variations not
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classified as foreground. Otherwise, the false positive segmentation rate will

increase. Nonetheless, the background model cannot be too comprehensive due

to the high risk of mis-detection.

Three different background images are used to model the background of the

scene in the proposed background modeling. These models are: a) BP - the

primary background; BS - the secondary background; and BM - the median

background. The BP is the main background model. It has to have, at all

times, the background model that is closest to the current frame background.

This model shall take into consideration fast variations in the scene, like lighting

changes or camera AGC adjustment. The BS background is used to model ob-

jects classified as static but that can undergo small variations in position and/or

in shape. By static background object variations it is meant, for instance, sway-

ing trees, fluttering flags, camera pole vibration (causing the image to shake),

camera signal noise and digital video compression. Lastly, the BM background

is the median pixel value of the last n frames with a frame interval of ∆ frames.

This background is the cleanest one of the three backgrounds due to its median

properties. Lighting changes, for example, turning artificial lighting on or off

and shadows cast by moving clouds can deteriorate the BP model. The update

process of BP (presented in Sec. 2.2.2) can also leave “ghosts” in the model.

Therefore, BM is used to avoid corruption and deterioration of BP background

in those situations.

Initial Background Model Estimation

A crucial task of all background subtraction based approaches is the initial

background model estimation, that needs to be both accurate and fast. An

incorrect initial background estimation can lead to “ghosts” in the segmentation

process, and, consequently, false foreground pixels will arise in the segmentation

process. In dense traffic situations it is frequently impossible to have a clear

background for many frames in order to estimate the background model.

An usual approach to initialize the background model is the weighted average

[9, 14]. This solution does not estimate a robust background model in scenarios

with high traffic density. Due to the statistical properties of the average, all

samples contribute to the final estimation. As a consequence, the colors of the
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vehicle can blend into the background model. Another drawback of this process

is the number of necessary frames to estimate an acceptable background model.

In [15] a bootstrapping approach is used to estimate the background model.

Just like in the weighted average approach, several frames can be necessary to

estimate the background model.

In order to achieve a robust initial background model and minimizing the

necessary frames to do so, a median-based process was used. The proposed sys-

tem calculates the median of a stack of frames based on 2.18, where φ is the pixel

index, It is the current frame, n is the buffer size and ∆ is the interval between

samples acquisition. From the undertaken experiments, the median background

estimation proved to be more accurate than the weighted average estimation.

Figs. 2.4 and 2.5 illustrate the comparison between the background estimation

with the weighted average and the median. As one can see, the weighted average

estimation is darker in the regions where there is a higher number of vehicles

passing due to the vehicle blending (top of the road). Besides, the weighted

average estimation needs about 500 frames to achieve a good background model

estimation in a high traffic density scenario, while the median estimation needs

only around 50 frames. The median computational process spends about 3 sec-

onds for a buffer with 50 samples. Initially, BP and BS are equaled to this

initial background estimation BM .

In Fig. 2.6 it is shown the effectiveness of this background modeling method-

ology in an outdoor scenario with moving shadows casted by clouds.

BM (φ) = medianφ

(
It(φ), It−∆(φ), It−2∆(φ), ..., It−(n−1)∆(φ)

)
(2.18)

2.2.2 Online Background Model Update

Just like the background model initialization process, the online background

model update is a very important task in the performance of the segmentation

process. This process is the main responsible for the system stability along the

24 hours of the day. To take into account illumination changes, it is demanding

an accurate background update. Traffic jam situations can lead to a misclas-

sification of pixels as background if the pixels in the background model are all
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(a) (b)

(c) (d)

Figure 2.4: Initial background model estimation. a) and b) two frames of the

scene where background model was computed. c) background model estimation

with a weighted average of 500 frames; d) background model estimation with

the median of 50 frames
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(a) (b)

(c) (d)

Figure 2.5: Initial background model estimation with traffic jam situation. a)

and b) two frames of the scene where background model was computed. c) back-

ground model estimation with a weighted average of 500 frames; d) background

model estimation with the median of 200 frames
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updated with the same criteria. In order to avoid this problem, the model up-

date process is carried out after the segmentation process. A mask of the pixels

classified as foreground (MF (φ)) is created during the segmentation process;

the mask is then used to define the update criteria. Detailed description of the

online process to update BP , BS , and BM will be presented below.

Median Background Update

The online median background estimation is computed almost in the same way

as the initial background model estimation but in this situation the buffer always

contains the last n samples. The only difference has to do with the buffer size

of the samples and the update frequency. Buffer sorting is a computationally

heavy task, making it therefore necessary to minimize it. In order to reduce the

computational time, both n and the update frequency were reduced (namely

n = 5 and ∆ = 30). In order to achieve good results with a small buffer, the

buffer of the samples is only updated if MF (φ) = 0 for the related pixel φ. If

MF (φ) = 1 the buffer is updated in the next frame if MF (φ) = 0. A new pixel

median estimation is computed every time the buffer is updated.

Primary and Secondary Background Update

The current scene conditions should be reflected in BP and BS in a normal

situation. If it does not happen, then the BM model is used. First of all, and

to ensure that BP is the closest background model to the currently classified

background, BP is swapped with BS if BS is more similar to the current back-

ground than BP . During the foreground pixel segmentation process, the closest

background model to the current classified background is also identified for each

pixel. In order to avoid BP and BS degradation, it is also verified if BM is the

closest model to the current background. Since BM is a filtered background

model (median filtering), having it as the model closest to the current back-

ground means that BP has some disturbance. BP is equaled to BM so that

disturbances are eliminated. After this swap process, BP pixels are updated

with a weighted average using Eq. 2.19, where η is defined by Eq. 2.20. Differ-

ent values of η are used in the background update process: ηs is the integration

factor of pixels classified as foreground and ηs is the integration factor of the pix-

45



els classified as background. The integration factor ηf is used for updating the

background pixel and is tunned for a fast adaptation to background variations.

This background update process is performed at the pixel level. Nonetheless, ηs

is much smaller than ηf to avoid the blending of vehicles in the model (namely

ηf = 0.05 and ηs = 0.0005).

Bt+1
P (φ) = η It(φ) + (1− η) Bt

P (φ) (2.19)

η =





ηS if MF (φ) = 1

ηF if MF (φ) = 0
(2.20)

The objective of BS is to store information about the pixels classified as

background, but only those with more than one color on its model. After the

learning phase, this background is equal to BP , but in the detection phase and

with the swap operation it is modeled with pixel variations if they exist. How-

ever, in some situations, it is possible that BS is wrongly modeled, and, in this

case, if it is not corrected it can lead to mis-detections during the segmenta-

tion process. To prevent BS from being wrongly estimated, it is analyzed at

all iterations the last time that the model was the closest model to the current

background. If the BS model is not used during more than Td iterations, it is

equaled to BP . This way, the model is maintained only if it is frequently used.

2.2.3 Pixel-level Analysis

The main procedure in a segmentation process is the foreground pixel detection.

It is verified if every pixel matches the background model. If a pixel does not

match the model, it is classified as foreground pixel. A filtering process is also

used in order to discard some noisy segmented pixels.

Foreground Pixels Thresholding

Most systems compute the difference between the current frame and the back-

ground image and consider as targets the pixels above a certain threshold. After-

wards, neighborhood pixels are clustered to form possible foreground regions.

This process usually leaves gaps that might lead to an erroneous foreground
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(a) Frame It (b) Bt
P Model (c) Bt

S Model (d) Bt
M Model

Figure 2.6: Background model adaptation over time with a moving shadow

casted by a cloud. Note that Bt
P always models the scene variations, Bt

S main-

tains the previous background model, and Bt
M does not change during this pe-

riod, i.e., it maintains the original background model before the moving shadow.
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detection. Morphology can be used to fill in these gaps. However, threshold-

with-hysteresis is preferred since it is a more accurate algorithm that only fills

in meaningful gaps.

A two level thresholding-with-hysteresis is used to detect the foreground pix-

els, i.e., all pixels in a foreground region must be above the low threshold, Tl,

and must have at least one neighbor pixel above the high threshold, Th. The

thresholds Tl and Th will be described in detail in Sec. 2.2.6. The thresholded

difference image (Dth(φ)) is obtained using Tl, according to Eq. 2.21, where

Diff(φ) is the minimum difference between the current frame and the back-

ground models (Eq. 2.22). The difference image, Dth(φ), is an RGB image and

the differences are obtained for each channel separately. In Sec. 2.2.4 it will be

explained how obtain the foreground pixels using Dth(φ).

Dth(φ) =





Diff(φ)− Tl if Diff(φ) > Tl

0 otherwise
(2.21)

Diff(φ) = mini∈{P,S,M}
∣∣It(φ) − Bt

i (φ)
∣∣ (2.22)

Foreground Pixels Filtering

A very challenging problem of a foreground objects segmentation system are the

detection of shadowed and the highlighted regions (e.g.: vehicles and clouds cast

shadows on the road, artificial lighting switching, etc.). Due to lighting varia-

tions between them and the background model, those regions can be classified

as foreground. This problem can lead to a change in the shape of the vehicle,

an increment of the vehicle’s area, and to false vehicle detection. Shadow detec-

tion in outdoor scenarios is a challenging problem due to the variability of the

shadow model. Description and solutions for this problem will be presented in

Sec. 2.3.

2.2.4 Region-level Analysis

After the foreground pixel identification and shadow/highlight removal, two

main procedures are carried out during the region-level analysis. Firstly, every

pixel classified as foreground and validated in the pixel-level analysis is grouped
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into blobs; these sets of blobs are the possible vehicles in the road. Secondly,

some validation procedures based on blob area, reliability of segmented pixels,

optical flow and a temporal validation are used to discard false foreground ob-

jects. These false objects detection are mainly caused by moving background

objects like waving trees.

The final output of the overall segmentation process will be the list of vali-

dated blobs (vehicles) and MF (φ) with the identification of all foreground pixels

(pixels belonging to vehicles).

Foreground Pixel Grouping

Foreground pixel grouping is carried out after the thresholding phase. To

perform the above-threshold pixel grouping, a Quasi-Connected Components

(QCC) process is used. This QCC algorithm is inspired in [14] but with some

improvements. This process combines thresholding-with-hysteresis (TWH) with

gap filling and connected component labeling. In order to keep the QCC process

fast, a reduction of resolution is performed. This reduction of resolution also

enables gap filling.

During the TWH process it is also created a lower resolution matrix of those

pixels above threshold. Each cell in the low resolution matrix maintains a count

of how many of the associated pixels are above Tl and Th in the original image.

The resolution is reduced by a factor of 2 in each direction. This way, a cell in

the low resolution matrix corresponds to a block of 2× 2 pixels in the original

image. To classify the block as foreground or background, the original QCC

algorithm only analysis the pixels inside it. The proposed improvement analysis

the neighbor blocks as well to perform the block classification.

Two criteria were used to define the foreground blocks by analyzing the low

resolution matrix (only one needs to be true): a) a block has to have at least

one pixel above Th; b) a block has to have at least two pixels above Tl and has

to have a neighbor block with at least one pixel above Th. This way, the region

has an overall high sensitivity, while also trying to ensure that at least some of

the pixels are very unlikely to be false alarms. The resulting foreground mask

is then resized to fit the original image size and the result is stored in MF .
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Blob Validation

In order to minimize false positive detections, every grouped blob is validated

before being labeled as object/vehicle. A set of validation rules are used in order

to discard blobs generated by false foreground pixels. Those false foreground

objects are mainly generated by illumination changes and noisy pixels that were

not identified in the pixel-level analysis. The set of rules used to validate the

blobs are:

1 - Blob Area During the labeling process, the area of the objects is obtained.

Blobs with an area below Amin are discarded. The choice of this threshold

value, Amin, depends on the scene and on the object position.

2 - Reliability of the Segmented Pixels Internally, the blob should have a

strong difference when compared to the background model. The blob is

validated if χTh/BlobArea > δ, where χTh is the number of segmented

pixels with Th threshold and δ is a ratio threshold.

3 - Blob Flow The estimation of the optical flow in the blob area occurs to de-

termine if the blob is a moving object. If any motion is detected, then the

blob is validated. The optical flow estimation procedure will be described

in detail in Sec. 2.4.

4 - Temporal Validation This criterion is used to validate stopped blobs

when the above criteria do not succeed. The blobs with no flow should

have significant area overlapping between consecutive frames.

All labeled blobs are validated by this set of criteria. If a blob does not

succeed in the three criteria (the third and the fourth criteria complement each

other), it is removed from the blob list and the corresponding pixels in MF (φ)

are set to zero.

2.2.5 Frame-level Analysis

A frame-level analysis is used to deal with abrupt changes in the scene. These

changes can be generated by abrupt lighting variations and radical camera mo-

tion, some examples are depicted in Figs. 2.7, 2.8, 2.9. In a regular situation, it
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Figure 2.7: A sudden illumination change in a tunnel scenario.

Figure 2.8: Three consecutive frames of an sudden lighting change in a tunnel

scenario.

is expected a small variation in the number of segmented pixels between consec-

utive frames. This assumption is verified in every frame after the thresholding

phase. If the segmented pixel growth is above a preset threshold, χ, it is con-

sidered that an abrupt change occurred on the scene, Eq. 2.23 represents the

used criterion. The threshold value, χ, is obtained empirically and taking into

account the average area and velocity of the vehicles in the image.

∣∣∣∣∣∣
∑

φ

M t
F (φ) −

∑

φ

M t−1
F (φ)

∣∣∣∣∣∣
> χ (2.23)

For a fast and robust adaptation to the present scene conditions the new

background model is learned again. Segmentation thresholds are also estimated

according to the new scene conditions. This learning process needs only a few

number of frames and less than five seconds to restart the segmentation process.

An example of the global segmentation process is depicted in Fig. 2.10.

2.2.6 System Thresholds

Four different thresholds are used in the segmentation process: the per-pixel

threshold (Tpp), the low threshold (Tl), the high threshold (Th), and the global
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Figure 2.9: The camera’s AGC changes the image brightness because of the

truck that is coming towards the camera.

threshold (Tg). The Tpp, attempts to account the scene noise at a pixel through

time, e.g., whenever the camera shakes, the edge pixels will have a significant

intensity change; in these cases, Tpp will be increased. The Tg is the minimum

value to eliminate camera noise and depends on the scenario. The low threshold

Tl is the sum of Tg and the per-pixel threshold Tpp (Eq. 2.24) that dynamically

adapts its value along the process. Finally, Th is an higher threshold (Th > Tl)

and is obtained by Eq. 2.25 where Ψ is a fixed multiplier and is obtained

empirically. The adoption of a dynamic per-pixel threshold is trivially explained

by the fact that using a fixed, per-frame threshold results in a system less

reactive to local lighting changes.

Tl(φ) = Tg(φ) + Tpp(φ) (2.24)

Th(φ) = Ψ × Tl(φ) (2.25)

Thresholds Initialization

Just like the background model, the threshold Tg is also initialized according

to the scene and camera properties in the learning phase. Using a stack of

learning frames, the Tg threshold is estimated through the analysis of the pixel

color variation [15]. In Sec. 2.2.1, a buffer of n frames is used to estimate the

initial background model. The same sorted buffer (Bk(φ)) is used to estimate

Tg, according to the Eq. 2.26. Where k is position inside the sorted buffer

B of pixel φ and, consequently, Bn+1
2 +1 is the median value of the data. The

threshold Tg is computed by Eq. 2.26. Where λ is a fixed multiplier, while g is

a fixed scalar (namely λ = 2 and g = 5).
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(a) Vehicles identification with a green

bounding box.

(b) Green pixels - above Tl. White pixels

- above Th.

(c) Detected foreground pixels. (d) Primary background model.

(e) Difference between the current frame

and the background model.

(f) Optical flow estimation.

Figure 2.10: Output of the proposed segmentation process in a typical outdoor

scenario.
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Tg(φ) = λ
(
Bn+1

2 +g(φ) − Bn+1
2 −g(φ)

)
(2.26)

During the detection phase, the threshold Tpp will adapt itself to lighting

and scene variations. This threshold is empirically initialized with 10.

Thresholds Update

The threshold levels are updated in the last step of the frame processing, i.e.,

after the foreground/background segmentation. In order to adjust Tpp to the

scene variations, MF (φ) and Dth(φ) are analyzed. For every pixel, φ, if Dth(φ) >

0 and MF (φ) = 0, then φ is labeled as a noisy pixel and Tpp(φ) is increased

by Tinc. By increasing Tpp of noisy pixels, the system sensibility is reduced,

as well as the probability of having pure noise regions classified as targets.

When pixels are not segmented (Dth(φ) = 0) more than µ frames their Tpp is

decreased by Tdec, therefore increasing their sensibility. To avoid the instability

of the system, Tinc should be much higher than Tdec. Those values were set to

Tinc = 8, Tdec = 1 and µ = 5.
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2.3 Shadow and Highlight Detection

Brightness variations and lighting changes in parts of the image are the biggest

challenge faced by background subtraction based segmentation algorithms. The

shadows induced by vehicles themselves may be segmented as part of vehicles,

which can not only interfere with information regarding size and shape but also

merge vehicles in a single blob (see Fig. 2.11). This can affect many higher

level surveillance tasks, such as counting, trajectory analysis, and classifying

individual objects in the scene. The shadows induced by the clouds can generate

mis-classification of pixels as foreground due to the fast lighting variation of

the scene lighting when the clouds are moving fast. The glares induced on

the surface of the highway by vehicles night light system and artificial lighting

variation also represent a problem for a robust outdoor vehicle segmentation

process.

Essentially, a shadow is generated by a change of the illumination conditions

(lighting variation, light source occlusion, etc.). Shadow detection comes down

to a problem of finding illumination invariant features. In outdoor scenarios,

finding illumination invariant features can be very challenging. Geometrically,

the shadow can be classified as umbra and penumbra [70] (see Fig. 2.12). The

umbra corresponds to the background area where the direct light is almost

totally blocked by a foreground object, whereas in the penumbra area, the light

is partially blocked. From the viewpoint of motion property, a shadow can be

divided into static shadow and dynamic shadow. A static shadow is cast by

a static object, while a dynamic shadow is cast by a moving object. In most

of the video surveillance applications, static shadows are not a problem for a

segmentation process (usually, static shadows are integrated into the background

model, this way, they are not mis-detected as a foreground object). For this

reason, the study here presented on shadow detection focus on the detection of

moving cast shadows.

For a given image, I(φ), the intensity of the pixels can be given as Eq.

2.27, where i(φ) represents the illumination component and r(φ) represents the

reflectance component of the scene components [70].

I(φ) = i(φ) + r(φ) (2.27)
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(a) (b)

Figure 2.11: Example of a shadow problem in an outdoor scenario, the vehicle’s

shape and area change significantly. a) Bounding box of the vehicles detected

with the proposed segmentation system. b) Foreground pixels detected with the

proposed segmentation system (green pixels).

The illumination component, i(φ), is computed as the amount of light power

per surface area of the receiving object and can be further expressed by Eq. 2.28,

where cp is the intensity of the light source, α is the angle enclosed by light source

direction and surface normal, ca is the intensity of the ambient light and t is the

transition inside the penumbra area which depends on the light source, scene

geometry, and 0 ≤ t(φ) ≤ 1.

i(φ) =





ca + cp. cos(α) illuminated area

ca + t(φ).cp. cos(α) penumbra area

ca umbra area

(2.28)

2.3.1 Shadow Detection Algorithms

Many methodologies have been presented in the literature for moving shadow

detection. These methodologies can be classified into three main categories:

Color Analysis The color-based analysis methodologies try to model the color

change of shaded pixels and to find color features that are illumination

invariant [72, 72, 66, 22, 44, 62]. Several color space transformations have

been proposed to better find those discriminant features. The pixel-level

analysis, in a general way, is very sensitive to image noise.
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Figure 2.12: The geometric relationship of a moving cast shadow.

Texture Analysis The principle behind texture-based analysis methodologies

is that the texture of shaded areas remains the same as that of the back-

ground, while the texture of foreground objects is different from that of the

background [29, 55, 75, 77, 43, 30]. These methodologies are characterized

by a region-level analysis in spite of a pixel-level, therefore decreasing the

sensitiveness to image noise.

Geometrical Analysis Geometry-based shadow detection methodologies use

camera location, ground surface, object geometry, etc., to identify moving

cast shadows [39, 40, 76]. This kind of approaches, in a general way, require

some prior information, like camera location, object geometry, etc.

Most of the state-of-the-art algorithms are based on the reference image –

background model image of the segmentation process. Let the reference image

and current analyzed image be B and I, respectively.

Siala et al. [66] consider the pixel’s intensity change equally in RGB color

components and a diagonal model is proposed to describe the color distortion

of shadow in RGB space. The color distortion is defined as (dR = IR/BR,

dG = IG/BG, dB = IB/BB), and the color distortion of shadow pixels is dis-

tributed near the line dR = dG = dB, which does not occur with foreground

objects. Therefore, the shadow pixels are discriminated from foreground ob-

jects according to the distance between pixel’s color distortion and the line

dR = dG = dB.
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Salvador et al. [64] proposed a normalized RGB color space, rgb, to segment

the shadows in still images and video sequences. The r, g and b components are

given by Eq. 2.29, Eq. 2.30, and Eq. 2.31, respectively.

r = arctan
R

max(R, G,B)
(2.29)

g = arctan
G

max(R,G, B)
(2.30)

b = arctan
B

max(R, G,B)
(2.31)

After integrating the intensity of neighboring regions, the shadow is detected

as the pixels change greatly in rgb color space. Considering that the imtensity

in RGB color space decreases in a same scale in shadowed pixels, it can be

found that rgb is illumination invariant.

Cavallaro et al. detected shadows by exploiting color information in a se-

lective way. In each image the relevant areas are identified and the color com-

ponents that carry most of discriminating information are selected for shadow

detection. The color model has shown its powerfulness in shadow detection.

Nevertheless, the foreground objects may have the same color as the moving

shadows, and it is not reliable to detect moving shadows by using only the color

information of the isolated points.

Horprasert et al. [38] proposed a computational color model which separates

brightness from the chromaticity component using brightness distortions α(φ)

and chromaticity distortions CD(φ), which are defined as follows. This work

considers the color constancy ability of human eyes and exploits the Lambertian

hypothesis (objects with perfectly matte surfaces) to consider color as a product

of irradiance and reflectance. The algorithm is based on pixel modeling and

background subtraction. First, the background model is learned, i.e., the means

and the variances of each color channel. Where E(φ) = [µR(φ); µG(φ); µB(φ); ]

is the mean vector and s(φ) = [σR(φ); σG(φ); σB(φ); ] is the variance vector.

The distortion of the brightness α(φ) is given by Eq. 2.32. The distortion of

the chrominance CD(φ) of the difference between expected color of a pixel and

its value in the current image I(φ) = [IR(φ); IG(φ); IB(φ)] is given by Eq. 2.33.
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α(φ) =

(
IR(φ)µR(φ)

σ2
R(φ)

+ IG(φ)µG(φ)
σ2

G(φ)
+ IB(φ)µB(φ)

σ2
B(φ)

)
([

µR(φ)
σR(φ)

]2

+
[

µG(φ)
σG(φ)

]2

+
[

µB(φ)
σB(φ)

]2
) (2.32)

CD(φ) =

√√√√
(

IR(φ) − α(φ)µR(φ)

σR(φ)

)2
+

(
IG(φ) − α(φ)µG(φ)

σG(φ)

)2
+

(
IB(φ) − α(φ)µB(φ)

σB(φ)

)2
(2.33)

The obtained α(φ) and CD(φ) are normalized w.r.t their root mean square

for pixel φ to obtain α̂(φ) and ĈD(φ). The pixel classification, C(φ), is given

by Eq. 2.34, where τα1, τα2, τCD, and ταlo are system thresholds.

C(φ) =





Foreground ifĈD(φ) > τCD or α̂(φ) < ταlo, else

Background ifα̂(φ) < τα1 and α̂(φ) > τα2, else

Shadow ifα̂(φ) < 0, else

Highlight otherwise

(2.34)

In [75], several techniques have been developed by Xu et al. to detect mov-

ing cast shadows in a normal indoor environment. These techniques include the

generation of initial change detection masks and canny edge maps, the detec-

tion of shadow region by multi-frame integration, edge matching, conditional

dilation, and post-processing.

McKenna et al. [55] assumed that cast shadows result in significant change in

intensity without changing chromaticity. Each pixel’s chromaticity is modeled

using its means and variances, and each background pixel’s first-order gradient

is modeled by using gradient means and magnitude variances. The moving shad-

ows are then classified as background if the chromaticity or gradient information

supports their classification.

Zhang et al. [77] used the normalized coefficients of the orthogonal transfor-

mation for moving shadow detection. Five kinds of orthogonal transforms (DCT,

DFT, Haar Transform, SVD, and Hadamard Transform) are analyzed, and their

normalized coefficients are proved to be illumination invariant in a small image

block. The cast shadows are then detected by using a simple threshold on the

normalized coefficients.

In [39], a Gaussian shadow model was proposed to detect the shadows of

pedestrian by Hsieh et al. The model is parameterized with several features
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including the orientation, mean intensity, and center position of a shadow region,

with the orientation and centroid position being estimated from the properties

of object moments.

Hsieh et al. [40] proposed a histogram-based method to detect different lane

dividing lines from traffic video sequence. According to these lines, a line-based

shadow modeling process is applied to eliminate vehicle’s shadows. Two kinds of

lines are used, including the ones parallel and vertical to lane directions, which

can be used to eliminate shadows in the different positions of the vehicles.

Yoneyama et al. [76] proposed joint 2D vehicle/shadow models to suppress

the moving shadows of vehicles. The proposed 2D vehicle/shadow models are

classified into six types and the parameters of these models can be estimated

by fitting the segmented vehicles with these models.

Color-based methodologies have shown its powerfulness in shadow detection.

Nevertheless, foreground objects may have the same color as the moving shad-

ows, and it is not reliable to detect moving shadows by using only the color

information of the isolated points. Texture-based methodologies may be the

most promising technique for shadow detection, whereas the state-of-the-art

of textural model are intricate in implementation. Moreover, in the homoge-

neous regions of the images, the textural information might not be reliable. The

geometry-based methodologies strongly depend on the geometric relationships

of the objects in the scenes, and when these geometric relationships change,

these methods become ineffective. Methodologies based on geometrical infor-

mation will not be taken into consideration for this analysis due to the prior

information required.

In order to find a solution that better satisfies the requirements of an outdoor

application, two state-of-the-art methodologies to identify shadow pixels were

implemented and tested: a color-based algorithm proposed by Cucchiara et

al. [22] and a texture-based algorithm proposed by Grest el al. [30]. These

methodologies will be described below.

HSV Color Representation Based Shadow Detection

A color-based methodology was presented by Cucchiara et al. [22] to identify

shadowed pixels. The Hue-Saturation-Value (HSV) color space (see Fig. 2.13)
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Figure 2.13: The conical representation of the HSV color space.

was used to separate the chromaticity and the luminosity in the pixel color

information.

Some considerations are taken into account to verify if segmented pixels

are classified as shadow. First, if a shadow is cast on a background, the hue

component changes, but within a certain limit. Additionally, the saturation

component also changes within a certain limit. The difference in saturation must

be an absolute difference, while the difference in hue is an angular difference. A

pixel in the position φ is classified as shadow if the condition defined in Eq. 2.35

is verified, where Dt
H(φ) is given by Eq. 2.36, It(φ) is the analyzed frame, and

Bt(φ) is the background model at the instant t. The .H, .S, and .V denotes,

respectively, the H, S, and V components of the HSV color space representation.

The thresholds of the system are: α, β, τS , and τH .

α ≤ It(φ).V
Bt(φ).V

≤ β ∧ ∣∣It(φ).S −Bt(φ).S
∣∣ ≤ τS ∧ Dt

H(φ) ≤ τH (2.35)

Dt
H(φ) = min

(∣∣It(φ).H −Bt(φ).H
∣∣ , 360−

∣∣It(φ).H −Bt(φ).H
∣∣) (2.36)

In the luminance analysis, the threshold α is used to define a maximum value

for the darkening effect of shadow on the background, and is approximately

proportional to the light source intensity. On the other hand, the threshold β

prevents the system from identifying as shadow those points where the back-

ground was darkened too little with respect to the expected effect of shadows.

A preliminary sensitivity analysis for α, β, τS , and τH is reported in [21].
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Figure 2.14: The representation of the chromatic plane of the hsL color space.

Shadow Detection Based on Color Normalized Cross-Correlation

This methodology uses the Color Normalized Cross-Correlation (CNCC) to mea-

sure the similarity between a shadowed region and the background model of the

same region [30]. A shadow is identified if the two image areas that were com-

pared are cross-correlated. This is a texture-based methodology, but it also uses

color information to identify the shadowed areas.

The similarity between the background model, Bt(φ), and the current frame,

It(φ), is measured by computing the color normalized cross-correlation. The

color of the pixel is converted into the biconic HSL space (see Fig. 2.14) in order

to split the color information from the brightness values. To measure similarity,

the HSL color space is calculated, not in polar coordinates, but through the

projection of the (R, G, B) vector onto the chromatic (H, S)-plane to compute

the Euclidean values of hue and saturation. It is denoted the representation in

Euclidean coordinates with (h, s). The projected h, s part is scaled, so that

its length equals the saturation of the HSL color space. It is also denoted that

cI = (hI , sI , LI) is the pixel components for a foreground pixel and cB the same

for the background image. It is defined on Eq. 2.37 the CNCC over a window

sized M×M for the two color pixels cI
x,y cB

x,y at an image position (x,y). V ARk

is defined by Eq. 2.38 where i ranges from x − M−1
2 to x + M−1

2 and j from

y− M−1
2 to y + M−1

2 , LI is the average intensity in the image I over the M ×M

window, k ∈ {I, B} and cI
x,y defined by Eq. 2.39.

CNCCx,y =

∑
i,j(c

I
x,y • cB

x,y)−M2LI LB

√
V ARIV ARB

(2.37)
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V ARk =


∑

i,j

(ck
x,y • ck

x,y)−M2Lk
2


 (2.38)

cI
x,y • cB

x,y = (hI
i,j , s

I
i,j) ◦ (hB

i,j , s
B
i,j) + LI

i,jL
B
i,j (2.39)

The operator ◦ denotes the scalar product, with negative values set to zero.

This operation regards the fact that two colors with an hue angle of more than

90 degrees between them are interpreted as different by humans. A pixel (i, j)

is classified as shadow if CNCCx,y > ς, where ς is a fixed threshold.

2.3.2 Experimental Results

In order to identify an algorithm that robustly detects shadows in outdoor sce-

narios, some state-of-the-art shadow detection algorithms were studied (see Sec.

2.3.1). A color-based shadow and a texture-based shadow detection algorithm

were selected for the evaluation tests. The Shadow Detection Based on HSV

Color Representation and the Shadow Detection Based on Color Normalized

Cross-Correlation were subject to several tests in order to verify the behavior

of these two algorithms in outdoor scenarios. Some comparative results of these

two algorithms are shown in Fig. 2.16. An example of sudden illumination

changes detection in a tunnel scenario is also shown in Fig. 2.17.

Some experimental tests were performed to evaluate the performance of the

two methodologies to detect shadowed pixels. Fifty frames of four different sites

with shadows casted by the vehicles (depicted in Fig. 2.15) were used to perform

these tests.

A shadow detection algorithm, in a general way, is used to improve the de-

tection of segmented pixels. This way, it is not relevant to analyze the shadow

detection algorithm performance in background regions. To take this into ac-

count, and to evaluate the performance of each tested methodology, it was

obtained the shadow detection accuracy η given by Eq. 2.40, and the shadow

discrimination accuracy ξ given by Eq. 2.41, where TPS is the number of pixels

correctly classified as shadow pixels, FPS is the number of wrongly classified

shadow pixels (foreground object pixels), TotalS is the total number of shad-

owed pixels, and TotalF is the total number of pixels belonging to foreground
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(a) Site 1 – Outdoor scenario (b) Site 2 – Tunnel scenario

(c) Site 3 – Tunnel scenario (d) Site 4 – Outdoor scenario

Figure 2.15: Scenarios used to compare the texture-based algorithm with the

color-based algorithm to detect shadowed pixels.

objects.

η =
TPS

TotalS
(2.40)

ξ =
FPS

TotalF
(2.41)

The results of the tests performed on the two shadow detection algorithms

with the two measures presented above are presented in Table 2.1.

The tested Color-Based shadow detection algorithm is a good shadow de-

tector in colorized areas, but it does not accurately detect lighting variations

in image areas with low color information (e.g.: in Fig. 2.16(g) the black ve-

hicle area is completely classified as shadow due to the similarity between the

color information in the image and in the background). In a general way, the

Texture-Based shadow detection algorithm demonstrates to be more robust than

the Color-Based one. The algorithm proved to be more accurate and robust for

the purpose. Therefore, it was adopted to detect shadows and highlights in the

segmented blobs.
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(a) Original Image (b) Color-Based (c) Texture-Based

(d) Original Image (e) Color-Based (f) Texture-Based

(g) Original Image (h) Color-Based (i) Texture-Based

(j) Original Image (k) Color-Based (l) Texture-Based

Figure 2.16: Shadow detection in outdoor scenarios. Left column – Captured

frame; Middle column – Color-Based shadow detection; Right column – Texture-

Based shadow detection. The shadowed pixels are identified with the red color.
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Texture-based Color-based

η ξ η ξ

Site 1 0.85 0.11 0.62 0.24

Site 2 0.84 0.09 0.80 0.07

Site 3 0.94 0.14 0.95 0.25

Site 4 0.89 0.02 0.66 0.19

Table 2.1: Comparative results of the tests performed with texture-based algo-

rithm and the color-based algorithm to detect shadowed pixels.

(a) Original Image (It−1) (b) Original Image (It)

(c) Color-Based (d) Texture-Based

Figure 2.17: Sudden illumination change detection in a tunnel scenario. a) two

consecutive frames of the sudden illumination change; c) Color-Based shadow

detection algorithm; d) Texture-Based shadow detection algorithm.
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2.4 Image Flow Estimation

In this section it will be discussed the problem of the image motion estima-

tion, also called optical flow. The optical flow estimation can be described as

the displacement estimation of a given set of features between two consecu-

tive frames. This methodology can provide useful information about vehicles

(velocity, motion direction, etc.) moving on the road.

Unlike the foreground segmentation process presented in Sec. 2.2, the optical

flow estimation does not require any scenario model, just two consecutive frames

are required. This way, the motion estimation process is very robust to different

weather conditions. The major drawback of this process is the dependence

on reliable features in the image to estimate the motion. Only points with

significant edge information are analyzed. Therefore, it is not possible to obtain

the complete shape of the moving vehicles in the scene.

Optical flow techniques are widely used in computer vision applications. The

goal is to compute an approximation to the 2-d motion field – a projection of

the 3-d displacements of surface points onto the imaging surface – from spa-

tiotemporal patterns of image intensity [1]. Many methods have been proposed

to robustly compute optical flow. Those methods can be divided into four main

categories:

Block-Based Matching Such approaches define displacement as the shift that

yields the best fit between image regions at different times. Finding the

best match amount that maximizes the similarity measure (normalized

cross-correlation, sum-of-squared difference, etc.) [25, 5, 49, 68].

Energy-Based These optical flow techniques are based on the output energy

of velocity-tuned filters. These are also called frequency-based methods

owing to the design of velocity-tuned filters in the Fourier domain [34, 2,

7, 12].

Phase-Based In those methodologies, the displacement is defined in terms of

the phase behavior of band-pass filter outputs [4, 26, 35, 24].

Differential Techniques Differential techniques compute the displacement from

spatiotemporal derivatives of image intensity of filtered versions of the im-
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age [37, 32, 74, 50].

A valuable comparison of different optical flow techniques is presented in

[8]. The differential technique proposed by Lucas and Kanade [50] achieved an

overall better performance in the comparative tests performed in [8]. Therefore,

it was adopted to estimate the vehicle’s motion.

The information provided by this algorithm will be used in some different

parts of this Automatic Traffic Surveillance System, such as: blob validation in

the foreground segmentation system (Sec. 2.2), and vehicle motion estimation

in the wrong way driver detection system (Sec. 3.3).

2.4.1 Optical Flow Estimation

The differential methodology adopted to estimate the vehicle’s motion is based

on the differential technique proposed by Lucas and Kanade [50]. This method-

ology makes use of the spatial-intensity gradient of the image to find a good

match using a type of Newton-Raphson iteration. Several improvements have

been proposed to this methodology in order to increase robustness, accuracy,

and reliability of the algorithm in real scenarios. A probabilistic formulation,

presented by Simoncelli et al. [67], provides an objective measurement of the

local level of reliability of the motion information in order to reject outlier mea-

surements. This probabilistic formulation compensates the noise in the image

derivative computation. Shi and Tomasi [65] proposed a numerically sound and

efficient way of determining affine changes by a Newton-Raphson minimization

procedure.

Let It−1 and It be two consecutive grayscale frames of an image sequence,

where, I(X) = I(x, y) is the grayscale value of the image at the pixel position

(x, y). Given an image point u = [ux, uy]T on the first image It−1, the goal of

the feature tracking algorithm is to find the location v = u + d on the second

image It such as It−1(u) and It(v) are similar. The vector d = [dx, dy]T is the

image velocity at u, also known as the optical flow at u. The image velocity d

is defined as being the vector that minimizes the residual function ε defined by

Eq.2.42. The similarity function is measured on a image neighborhood of size

(2ω + 1)× (2ω + 1). This neighborhood is also called integration window.

69



ε(d) = ε(dx, dy) =
ux+ω∑

x=ux−ω

uy+ω∑
x=uy−ω

(
It−1(x, y)− It(x + dx, y + dy)

)2
(2.42)

At the optimum, the first derivative of ε with respect to d is zero (Eq. 2.43).

After the expansion of the derivative it is obtained Eq. 2.44, where ∇I is an

image gradient vector and is given by Eq. 2.45.

∂ε(d)
∂d

∣∣∣∣
d=dopt

= [0 0] (2.43)

∂ε(d)
∂d

= −2
ux+ω∑

x=ux−ω

uy+ω∑
x=uy−ω

(
It−1(x, y)− It(x + dx, y + dy)

)
.∇IT (2.44)

∇I =


 Ix

Iy


 =

[
∂It

∂x

∂It

∂y

]T

(2.45)

Assuming a small displacement vector d, It(x+dx, y +dy) is substituted by

the first order Taylor expression in Eq. 2.46, where δI is given by Eq. 2.47

∂ε(d)
∂d

≈ −2
ux+ω∑

x=ux−ω

uy+ω∑
x=uy−ω

(
δI −∇IT .d

)
.∇IT (2.46)

δI = It−1(x, y)− It(x, y) (2.47)

Redefined Eq. 2.46 it is obtained Eq. 2.48.

1
2

[
∂ε(d)
∂d

]T

≈
ux+ω∑

x=ux−ω

uy+ω∑
x=uy−ω





 I2

x IxIy

IxIy I2
y


 .d−


 δI Ix

δI Iy





 (2.48)

Denote

G =
ux+ω∑

x=ux−ω

uy+ω∑
x=uy−ω


 I2

x IxIy

IxIy I2
y


 (2.49)

and

b =
ux+ω∑

x=ux−ω

uy+ω∑
x=uy−ω

(
It−1(x, y)− It(x, y)

)
.∇IT (2.50)
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Then, Eq. 2.48 may be written by Eq. 2.51.

1
2

[
∂ε(d)
∂d

]T

≈ G.d− b (2.51)

Therefore, following the Eq. 2.43, the optimum optical flow vector is given

by Eq. 2.52.

dopt = G−1.b (2.52)

The two key components of any feature tracker are accuracy and robust-

ness. A small integration window would be preferable in order not to smooth

out image details for an accurate feature tracking. On the other hand, a large

integration window would be preferable to robustly track features with lighting

changes, and in particular, to handle with large motions. In order to provide

a solution for this trade-off, a pyramidal implementation of the classical Lucas-

Kanade algorithm was proposed by Bouguet [13]. This pyramidal implementa-

tion of the classical Lucas-Kanade algorithm was used to estimate the vehicle’s

motion.

2.4.2 Features to Track Selection

The features to track selection procedure is fundamental to achieve an accurate

tracker. Shi and Tomasi [65] proposed a reliability criterion to evaluate the

texture properties of images areas in order to select good features to track.

A window centered in (x, y) is considered a good feature to track if the sym-

metric 2× 2 matrix Z is both above the image noise level and well-conditioned.

The matrix Z is defined by Eq. 2.53, where the summations are intended over

a small spatial neighborhood Ω of the pixel, W (x) is a window function that

gives more influence to pixels in the center of the neighborhood, and Ix and Iy

are the spatial gradients of the gray levels in directions x and y respectively. A

neighborhood, Ω, of 3× 3 pixels is sufficient for the selection of features.

Z =




∑

x∈Ω

W 2(x)I2
x(x)

∑

x∈Ω

W 2(x)Ix(x)Iy(x)

∑

x∈Ω

W 2(x)Ix(x)Iy(x)
∑

x∈Ω

W 2(x)I2
y (x)




(2.53)
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The noise requirement implies that both eigenvalues of Z must be high, while

the conditioning requirement means that they cannot differ by several orders

of magnitude. Two high eigenvalues can represent corners, salt-and-pepper

textures, or any other pattern that can be reliably tracked. In practice, when

the smaller eigenvalue is sufficiently high to meet the noise criterion, the matrix

Z is usually also well conditioned. This way, a window is accepted for tracking

if the condition defined by Eq. 2.54 is verified, where λ1 and λ2 are the two

eigenvalues of Z and δ is a predefined threshold. If the condition is not verified,

no displacement value is assigned to the pixel.

min(λ1, λ2) > δ (2.54)

The algorithm 2 is used to obtain the reliable feature points to track in image

It−1(φ). After this process, the remaining pixels are typically good points to

track. They are the selected feature points that are fed to the tracker.

Algorithm 2 Estimate good features to track in It−1(φ)
1: Compute the Z matrix and λm at every pixel in the image It−1(φ), where

λm = min(λ1, λ2).

2: Obtain the maximum value of λm over the whole image, λmax.

3: Retain the image pixels that have a λm value that verifies the condition:

λm > max(δ, τ × λmax), where τ is a fixed threshold and τ ∈ [0, 1].

4: From those pixels, retain the local maximum pixels, i.e., a pixel is kept if

its λm value is larger than that of any other pixel in its 3× 3 neighborhood.

5: Keep the subset of those pixels so that the minimum distance between any

pair of pixels is larger than ξ, where ξ is a fixed threshold (e.g. 5–10 pixels).

2.4.3 Experimental Results and Conclusions

In this section a methodology to estimate motion between two consecutive

frames was described. For this purpose, the differential technique presented

by Lucas and Kanade was used. In order to find good features to track in the

image a criterion of reliability to evaluate the texture properties of images areas

proposed by Shi and Tomasi was used.
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The optical flow algorithm described here was tested using several real

datasets from highways traffic surveillance cameras under different weather con-

ditions, illumination, image quality and fields of view. This system – integrated

in the wrong way driver detection system presented in Chapter 3 – has also been

running in ten different sites of Portuguese highways for fifteen months. During

this evaluation period, the presented system demonstrated it’s robustness and

accuracy under the different outdoor situations like different weather conditions,

lighting changes, low image quality (e.g.: video compression and analog video

transmission) and vehicle’s motion estimation in crowded situations.

Some examples of optical flow estimation in outdoor scenarios are shown in

Fig. 2.18. Note that displacement vectors with less than one are discarded and

that the presented images are a merge between the two consecutive frames used

to estimate the optical flow.

In a general way, the system just fails under low contrast scenario situations

and in situations where the image gets blurred due to the camera’s auto-focus

system or due to adverse weather conditions, like fog. In these situations, two

different things could occur: a) no good feature to track is found in the vehicle

area, this way no motion information is estimated for the vehicle; or b) for a

given feature, no correspondence is found in the It+1 and a wrong flow vector

is estimated.
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Figure 2.18: Optical flow estimation with the presented methodology in some

different outdoor scenarios. These examples are: a) Regular scenarios; b) Tunnel

scenario. c) Fog situation; d) Low contrast scenario and sun light in the direction

of the camera; and e) Rainy day.
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2.5 Experimental Results

The proposed system was tested with a real set of image sequences from high-

way traffic surveillance cameras under different weather conditions, lighting,

image quality and fields of view. It is also being tested in three different sites

of Portuguese highways for six months now. The segmentation process is able

to detect vehicles and to deal with outdoor adverse weather condition and illu-

mination changes in a robust way. The system can segment vehicles in outdoor

scenarios over a 320×240 pixel image at 18 fps on a 3.2 GHz P4 Intel Processor

under Linux OS. Some results of the segmentation process are depicted in Fig.

2.19, 2.20, 2.21, 2.22, 2.23, and 2.24. On the left column, vehicles are identified

with a green bounding box. The minimum difference between the current frame

and the three background models is represented on the center column, and, on

the right column, the foreground pixels are identified with the green color.

(a) Detected vehicles. (b) Differences image. (c) Foreground pixels.

Figure 2.19: Segmentation process in a typical outdoor scenario.
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2.5.1 Segmentation Process Robustness and Accuracy

In order to estimate the robustness and the accuracy of the presented fore-

ground/background segmentation methodology some tests were performed using

the dataset and the rules available at VSSN 2006 website1.

To obtain robust assessment of performance, the proposed methodology was

evaluated against different categories of test sequences. The test datasets in-

cludes the following problems: a) sudden illumination changes; b) moving back-

ground objects; c) gradual illumination changes; and d) training period with

foreground objects. The composition of this dataset is described in Table 2.2.

The algorithm was not tested in Video 1 and in Video 7 because we were unable

to use the provided ground truth.

For each test video the average of false alarms pixels and missed foreground

pixels per video frame were calculated using the ground truth video. In order

to allow for small boundary errors, errors within two pixels of the boundary

between foreground and background will not be counted. The performance

evaluation, for each video, started after the initial training period. This training

period was set to 10 seconds.

The proposed segmentation process was compared with two different meth-

ods with the same datasets and in the same conditions. These methods are: a)

Mixture of Gaussians proposed by Stauffer and Grimson [71] and described in

Sec. 2.1.1; and b) Improvement of SAKBOT system presented by Calderara et

al. in [15] and described in Sec. 2.1.1. The comparative results2 are shown in

Fig. 2.25.

These comparative results prove that the proposed segmentation process is

able to deal with outdoor adverse condition achieving good performance results.

It robustly deals with moving background objects and background model esti-

mation with foreground objects in the scene. The proposed method achieves

an overall better performance when compared with MoG. When compared with

SAKBOT system the proposed system achieves an overall similar results.
1VSSN 2006 – Algorithm competition in foreground/background segmentation web page:

http://mmc36.informatik.uni-augsburg.de/VSSN06 OSAC/.
2The performance evaluation results of two compared methods was obtained in [15].
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Video Preview secs. fps Description

Video 1 10 30 - indoor scenario

Video 2 16 30 - indoor scenario

Video 3 36 25
- outdoor scenario

- moving background objects

Video 4 32 25
- outdoor scenario

- moving background objects

Video 5 30 25 - indoor scenario

Video 6 30 25

- indoor scenario

- training period with fore-

ground objects

Video 7 30 25
- outdoor scenario

- moving background objects

Video 8 47 25

-indoor scenario

-illumination changes

-training period with fore-

ground objects

Table 2.2: Composition of the challenging datasets available at VSSN 2006

website and used to validate the proposed segmentation algorithm.
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2.6 Conclusions

In this chapter, a methodology was proposed to segment vehicles in outdoor

scenarios based on background subtraction. Three different background models

were used to model all background variations and to avoid the degradation of

the model. The system is able to efficiently estimate the initial background in

high dense traffic situations and to update the model to work twenty four hours

a day under different weather condition and lighting changes. Two distinct

thresholds are used for a robust adaptation to the scene variations along the

day. These thresholds are also initialized in the training period and updated in

every frame. A shadow/highlight detection algorithm based on cross-correlation

was also presented to discard the blobs or parts of blobs generated by lighting

variation. In order to deal with abrupt changes variations, a frame-level analysis

is performed. Thus,the system quickly adapts to scenario changes.

The experiments conducted on a large number of scenes of Portuguese high-

ways and on the VSSN 2006 test dataset demonstrate that this system is able

to robustly segment vehicles under different weather conditions, lighting, image

quality and image compression variation. This segmentation process proved to

be a good basis for an automatic traffic surveillance system.
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(a) Detected vehicles. (b) Differences image. (c) Foreground pixels.

Figure 2.20: Segmentation process in a typical outdoor scenario.

(a) Detected vehicles. (b) Differences image. (c) Foreground pixels.

Figure 2.21: Segmentation process in a typical outdoor scenario.
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(a) Detected vehicles. (b) Differences image. (c) Foreground pixels.

Figure 2.22: Segmentation process in a tunnel scenario.

(a) Detected vehicles. (b) Differences image. (c) Foreground pixels.

Figure 2.23: Segmentation process in a rainy situation.
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(a) Detected vehicles. (b) Differences image. (c) Foreground pixels.

Figure 2.24: Segmentation process with rain drops in the camera’s lens
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(a) Average of false negative pixels per frame for each test video.

(b) Average of false positive pixels per frame for each test video.

Figure 2.25: Comparative results between the proposed methodology, the mix-

ture of Gaussians and the SAKBOT system improvement with the VSSN 2006

dataset.
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Part II

Automatic Incident

Detection
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Chapter 3

Wrong Way Vehicle

Detection

3.1 Introduction

Vehicles driving on the wrong way represent a serious threat that victimizes

a considerable number of people every year across the world. This kind of

situations is increasing every year proportionally to the volume of traffic. An

immediate detection of a vehicle driving on the wrong direction could help

prevent serious accidents. When detected, several actions can be taken, such

as warning the oncoming vehicles (e.g.: via traffic telematic systems or radio

announcements) and the responsible authorities.

The proposed system aims at automatically detecting drivers circulating

on the wrong way and triggering an alarm on the highway traffic telematic

system. The system must be robust to illumination changes and small camera

movements, being able to robustly identify and track wrong way vehicles against

occlusions and crowded events.

Several tests with real outdoor highway datasets proved the robustness of the

proposed system. The system was also tested in several real scenarios of Por-

tuguese highways during several months, and the results were also very promis-

ing.
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3.1.1 Related Work

During the research on this topic, few relevant publications were found. In [42],

Santner et al. present a wrong way driver detection system based on stereo vi-

sion. The disparity map is used to identify the vehicles circulating on the road.

In a next step, it is performed the tracking of the identified vehicles in order

to obtain the motion vectors which are classified depending on their direction.

Finally, the motion vectors are analyzed to identify wrong way vehicles. The

authors state that the false positives due to shadows and reflections are sup-

pressed, this way, the false positive rate decreases significantly. Unfortunately,

during the research period, no publications or results on this work were found.

Using two cameras can be a considerable drawback if the system is going to

be installed in an already existing video surveillance system. Another way to

detect wrong way drivers is using a segmentation process (Sec. 2.2), tracking

all segmented vehicles, and verifying if the direction of their trajectory is the

correct one for the lane or if it is a vehicle circulating on the wrong side. This

process has some disadvantages, namely tracking vehicles in crowded situations

without grouping those circulating near each other.

3.2 Proposed Methodology

The proposed methodology is based on the information provided by an optical

flow algorithm (Sec. 2.4). This optical flow information will be used to estimate

the direction of the vehicle. This process is very robust to light and weather

conditions variation. This system is based on three main stages. Firstly, the

orientation pattern of the vehicle’s motion flow is learned and modeled by a

mixture of Gaussians. Then, there is a Detection Phase: it is verified, in each

frame, if the direction of the areas where movement was detected matches the

learned direction model. On both phases, a Block Median Filtering is applied

to the motion flow in order to remove noisy data. Finally, a temporal validation

is used to analyze the motion direction consistency and, this way, validate the

object as a real wrong way vehicle. If the validation succeeds, an alarm is

triggered. This validation process consists of tracking the wrong way regions

over time and verifying if a coherent trajectory is made.
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3.3 Vehicle’s Motion Estimation

The estimation process of the vehicle’s motion is the main part of the proposed

wrong way driver detection system. In order to estimate the direction of the

vehicle, θ, it is used the optical flow algorithm described in Sec. 2.4.

During the tests performed on this optical flow algorithm, satisfactory results

were obtained when validating the foreground blobs. Some wrong flow vectors

are estimated, but the effects on the final result of the segmentation process are

not significant. However, for the purpose presented here, those noisy estimations

can significantly decrease the performance of the system. Some examples of the

referred optical flow estimation disturbances are shown in Figs. 3.1(a), 3.1(c),

3.1(e), and 3.1(g). These wrong estimations are mainly caused by image noise

and motion flow discontinuity regions. A Block Median Filtering process is used

to minimize this problem (Sec. 3.3.1).

3.3.1 Block Median Filtering

In order to filter motion direction (θ) a median filtering is used. This block anal-

ysis has also the advantage of reducing the volume of the analyzed information.

When applying this filter, the image is divided into blocks of n × n pixels (see

Fig. 3.1). For each block, the median of the directions obtained by the optical

flow algorithm is calculated. Note that this is not a regular median operation,

the direction θ is not linear (θ ∈ [−π, π]).

To maximize the effectiveness of the filter, a high number of optical flow

samples should be available. Therefore, a high value of n is desirable. On

the other hand, a low value of n should be used so that no significant motion

information resolution is lost. The motion information resolution is particularly

important when the vehicle’s area, in the image, is too small. A block size of

8 pixels (n = 8) proved to be a good value to achieve a suitable balance. This

value was obtained empirically during several experiments conducted in outdoor

scenarios.

From this moment on, every reference made to the motion direction esti-

mation is related to the median motion flow of the block. Likewise, the flow

detected in the image is analyzed for each block instead of a pixel-level analysis.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.1: Results of the Block Median Filtering to reduce the disturbance in

the optical flow estimation. a), c) e), and g) output of the estimated optical

flow. b), d), f), and h) result of the block median filtering. Note that in h) not

all the wrongly detected vectors are filtered.
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3.4 Traffic Flow Direction Learning

During the traffic flow direction learning process it is assumed that vehicles

circulating on the road are moving in the correct direction along the lane. At

the end of this learning process, a model of the flow direction is obtained for

each block of n× n pixels in the image.

The estimation of each lane’s flow direction on the image is learned through

the analysis of a large amount of frames. It is assumed that the motion directions

of the vehicles (θ) follows a Gaussian distribution. This way, the direction can

be modeled by a Mixture of Gaussians (MoG). The idea behind this modeling

process was described in detail in Sec. 2.1.1. Each block of the image will be

modeled by a MoG through the analysis of the vehicle’s movement (see Fig.

3.2).
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Figure 3.2: Flowchart of the traffic flow direction learning process.

For this purpose, the maximum number of kernels in the MoG was limited

to K = 3. At the end of the learning process, the models are filtered in order

to eliminate some noisy flow vectors. The Gaussian models with low relevance

are discarded, i.e., the models with a weight, ωi, below the predefined threshold

are discarded. This way, this learning process is also used to robustly discard

noisy estimated flow vectors. The result of this filtering process is shown in Fig.

3.3(d) and 3.4(d).

Another advantage of the Gaussian mixture modeling in this situation is that
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(a) 10thframe (b) 100thframe

(c) 300thframe (d) Filtered result

Figure 3.3: Traffic flow direction learning process: a), b) and c) show the evo-

lution of the orientation pattern modeled by the first Gaussian of the MoG on

a highway scenario. d) the result of the learning process after the model weight

filtering.

it can embrace a variety of directions for the same block, which is very useful in

lanes with exits or bifurcations, modeling also the movements of vehicles that

are changing between lanes.

The number of necessary frames to obtain a correct estimation of the MoG

depends on the number of vehicles circulating on the road. In our experiments a

stack of 1000 learning frames proved to be the necessary to obtain a good traffic

directions model. Obviously, if there are no vehicles circulating on one block,

the direction of that block will not be learned. Two examples of the traffic flow

directions learning process are shown in Figs. 3.3 and 3.4.
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(a) 10thframe (b) 100thframe

(c) 300thframe (d) Filtered result

Figure 3.4: Traffic flow direction learning process: a), b) and c) show the evo-

lution of the orientation pattern modeled by the first Gaussian of the MoG on

a highway scenario. d) the result of the learning process after the model weight

filtering.
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Figure 3.5: Flowchart of the proposed wrong way drivers detection system.

3.5 Wrong Way Vehicle Detection

In this section it is described the methodology used to detect and validate the

vehicles circulating on the wrong way of the road (see Fig. 3.5). For each new

frame the optical flow and the median of the flow direction are computed for

each block. A block is classified as circulating on the wrong direction when the

difference, ∆d, between both the direction of the flow, in the present frame, and

the estimated means of the corresponding block learned are larger than 2.57σ for

the 99% confidence interval. The difference between two given angles, α1 and

α2, is calculated by Eq. 3.1, where ρ is given by Eq. 3.2. After this detection,

the neighbor blocks with flow estimated in a wrong direction are grouped into

blobs just like in the segmentation process (see Sec. 2.2.4). Each blob that

results from this grouping process is possible wrong way vehicle.

∆d =





ρ ρ < π

2π − ρ ρ ≥ π
(3.1)

ρ = |α1 − α2| (3.2)

Some situations and sources of noise were identified as contributing to a

significant decrease in the system’s performance (see Fig. 3.6). Some of these
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situations are:

• moving cast shadows

• illumination changes

• low and variable frame rate

• vibration of the surveillance camera pole

• wrong flow estimation of the LK algorithm due to image noise

This way, it is necessary to validate every object detected as circulating in

the wrong way, to eliminate false positives, before triggering an alarm. In order

to discard some false positives, a temporal validation is used to verify if the

detected objects make a coherent trajectory.

3.5.1 Temporal Validation

The first stage of the temporal validation consists of tracking all the objects

detected as circulating on the wrong side of the road and verifying if they

appear in consecutive frames. If an object is detected more than n times in m

consecutive frames, it will be considered as an object circulating on the wrong

side of the road, namely n = 4 and m = 6. A second order Kalman filter is used

to track and predict the position of the vehicles in consecutive frames.

When a detected flow does not match the learned motion direction model,

a new tracker is initiated. The object image position, P , is given by the center

of mass of all neighbor blocks detected as being part of an object moving in

a wrong direction. The velocity, ϑ, of the object is obtained in 2 parts: the

direction is obtained as the median of the direction of all grouped blocks, and

the module is computed by the average motion of all grouped blocks. When

tracking the object, it is only necessary to save P , ϑ, and the area of the grouped

blocks.

After this validation, a verification is performed in order to see if the detected

object makes a coherent trajectory. This is obtained by the analysis of the

positions and the estimated displacement of the object in the last m frames. In

some scenarios, it is possible that objects, like poles and trees, have a noisy flow
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(a)

(b)

(c)

Figure 3.6: Some examples of false optical flow estimation. a) Wrong optical

flow estimation in a tunnel scenario; b) Pole interference in the optical flow

estimation; c) False optical flow estimation due to cast shadows.

due to cars driving behind these. Therefore, this kind of flow could generate

false positives. The variance (ν) of the direction of the flow vectors is also

analyzed so that these false positives can be eliminated. If ν is above a preset

threshold, this possible object will be discarded.

3.6 Experimental Results

3.6.1 Tests Performed On-Site

The proposed wrong way vehicle detection system was tested in several sites

in Portuguese highways for several days. The tests were performed under dif-

ferent weather conditions, illumination, image quality and fields of view. The

95



description of the test sites is presented in Fig. 3.7. Some examples of successful

detections are presented in Figs. 3.13, 3.11, 3.12, 3.10, 3.9. The results of the

performed tests are presented in Table 3.1. In most of the detection events,

vehicles are reversing, but, for the system, this situation can also be considered

as a wrong way vehicle event.

The three main reasons for false positives detection are: a) Vehicle’s illumi-

nation projected onto the opposite direction road at night (see Fig. 3.14(c)); b)

The shadow casted by a vehicle is projected onto the opposite direction road,

this situation might occur at sunrise or at sunset and with taller vehicles (see

Fig. 3.14(a) and 3.14(a)); c) The higher part of taller vehicles is projected onto

the opposite direction road (see Fig. 3.14(d)).

In the tests performed in real highway sites it is not possible to evaluate

the detection rate of the system because no ground truth is available. Some

other tests will be described below in order to evaluate the detection rate of the

system.

(a) Site 1 (b) Site 2 (c) Site 3

(d) Site 4 (e) Site 5 (f) Site 6

Figure 3.7: Sites in Portuguese highways used to validate the proposed wrong

way vehicle detection system.
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Site Duration (days) Detected False Positives/Day

site 1 68 7 0.0

site 2 23 3 0.0

site 3 77 9 0.0

site 4 193 5 0.13

site 5 220 1 0.33

site 6 36 3 0.11

Table 3.1: Performance of the proposed wrong way vehicle detection system in

some surveillance cameras in Portuguese highways.

Figure 3.8: Wrong way vehicle detection in a typical outdoor scenario. The

vehicle is reversing in a lane disabled for maintenance.

3.6.2 Tests Performed in Datasets of Highway Scenarios

Six video sequences from Portuguese highways scenarios were used to evaluate

the detection rate of the system. These challenging datasets were obtained

under some different weather conditions. The test videos are described in Table

3.2. In Video 1, 2 and 3, one of the roads is disabled and the traffic of the two

directions occurs in the same road. The road direction learning process was

performed before these traffic changes. Therefore, one of the traffic directions

is considered as circulating on the wrong direction. For Video 4, 5 and 6,

all the directions learned during the training phase were increased by π and,
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Figure 3.9: Wrong way vehicle detection in a typical outdoor scenario. The

vehicle is reversing in the hard shoulder.

therefore, all vehicles on the road should be considered as circulating on the

wrong direction.

The results of the tests performed are presented in Table 3.3. An example of

wrong way vehicle detection under occlusion is presented in Fig. 3.15. In most

of the situations, the miss detection occurs because no good features to track

are selected for the vehicle. The absence of good features to track is due to low

contrast situations and to image blur. The image blur can also lead to wrong

flow estimations. An example of miss detection due to wrong flow estimation is

presented in Fig. 3.16. In most of the situations, wrong flow estimation is due

to low image quality.

The system is able to detect vehicles moving on the wrong direction of a lane

over a 320×240 pixel image at 33 fps on a 3.2 GHz P4 Intel Processor under

Linux OS.

3.7 Conclusions

In this chapter, a methodology to detect vehicles circulating on the wrong side

of the highway using optical flow information is proposed. In the learning phase,

the motion direction of each lane is modeled by a Mixture of Gaussians. The

optical flow is computed every frame in order to estimate the vehicle’s motion

98



Figure 3.10: Wrong way vehicle detection in a tunnel scenario. The vehicle is

reversing in the hard shoulder.

direction. If the estimation direction does not match the direction model, then

a temporal validation is used. If the validation succeeds, an alarm is triggered.

The experiments conducted on a large number of scenes demonstrate that

the proposed system is able to detect vehicles circulating on the wrong side

of the road with good accuracy, and that it is robust to weather conditions,

illumination and image quality variation.
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Figure 3.11: Wrong way vehicle detection at night. The vehicle is reversing in

a lane disabled for maintenance.

Figure 3.12: Real wrong way vehicle detection at night.
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Figure 3.13: Real wrong way vehicle detection.
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(a) Shadow casted by a vehicle is projected onto the opposite direction road.

(b) Shadow casted by a vehicle is projected onto the opposite direction road.

(c) Vehicle’s illumination projected onto the opposite direction road.

(d) Higher part of the bus is projected onto the opposite direction road.

Figure 3.14: Some situations of false wrong way vehicles detected in the per-

formed tests.
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Video Preview Duration Description

Video 1 00:10:12

The road on the right is dis-

abled. The traffic of the two

directions occurs in the same

road.

Video 2 00:07:48

The road on the left is dis-

abled. The traffic of the two

directions occurs in the same

road. Low contrast.

Video 3 00:16:40

The road on the left is dis-

abled. The traffic of the two

directions occurs in the same

road. Low image quality.

Video 4 00:09:24 Wet road in a tunnel scenario.

Video 5 00:07:32 Fog Situation.

Video 6 00:08:17
Rain drops in the camera’s

lens.

Table 3.2: Datasets used to validate the proposed wrong way vehicle detection

system.
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Video Ground Truth Detection Rate False Positives

video 1 108 1.00 0

video 2 72 0.97 0

video 3 336 0.94 0

video 4 133 0.98 0

video 5 331 0.98 0

video 6 123 0.99 0

Table 3.3: Performance of the proposed wrong way vehicle detection system in

test datasets in Portuguese highways.

Figure 3.15: Wrong way vehicle detection under occlusion in a simulated event.

Figure 3.16: Miss detection of wrong way vehicle due to image noise.
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Chapter 4

Stopped Vehicle Detection

4.1 Introduction

A vehicle stopped on the road or on the hard shoulder poses a serious threat to

the other road user and to the road safety. This threat can become a really dan-

gerous situation, mainly in a tunnel scenario. A fast detection of a stopped vehi-

cle can help prevent serious accidents by warning a human operator at the traffic

management center. Several measures can be taken to minimize the threat, such

as warning the oncoming vehicles (e.g.: via traffic telematic systems or radio

announcements) and warning the responsible authorities. In several countries,

and in order to maintain road safety, it is forbidden to pull over in a highway.

Usually, a driver pulls over in case of emergency/malfunctioning/etc. Some

actions can be taken to help the driver, such as sending a roadside assistance

vehicle.

The stopped vehicles detection system presented in this chapter has three

main phases. Firstly, the vehicles in the scene are segmented using the segmen-

tation process presented in Sec. 2.2. Secondly, it is verified if there are any

static pixels segmented during a certain period of time. Those static pixels are

then grouped into blobs. Finally, a temporal validation is applied to the stopped

blobs in order to discard false positives. If the validation succeeds, an alarm is

triggered in the traffic telematic system.

Several tests were performed on this system with some public datasets. This
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system was also tested on real highway scenarios during several months. The

results of the tests proved that the presented system robustly detects stopped

vehicles against occlusions and in high traffic density scenarios.

4.1.1 Related Work

A significant amount of different methodologies have been proposed to robustly

detect static objects in a scene. This problem can be divided into two main

types: a) abandoned item detection; and b) stopped vehicle detection.

Over the last decade, a lot of attention has been given to the detection of

abandoned objects based on video surveillance, because of the constant terrorist

threat. Some methodologies have been proposed to detect abandoned items [6,

23, 48, 69, 31]. Most of these methods assumes that the scene is not crowded and

occlusions are minimal. The system detection performance strongly depends on

the performance of the tracking process.

In [63] a general purpose methodology to detect static objects in the scene

was presented. A long-term (Blt) and a short-term (Bst) background model are

used to identify temporarily static regions in the image. Two binary foreground

(Flt and Fst) maps are estimated by comparing the current frame with the back-

ground models. A pixel is classified as stopped if it is classified as background

by Flt and classified as foreground by Fst. This methodology is based on a

pixel-based analysis and does not require a tracking process.

A mixed tracking approach is used in [56] to identify vehicles that stop in

a forbidden area of the scene. A predictive Kalman filter-based process is used

to track vehicles currently in the scene. A background suppression process is

used to identify vehicles in the scene. In order to robustly perform the data

association of the vehicles between frames, appearance models and probability

masks are used to extract relevant information from each vehicle. The authors

claim that this tracking system robustly deals with long-lasting occlusions. An

object is classified as stopped if it is stopped but it was moving in the last frames,

otherwise it is classified as false positive and is discarded.

A tracking approach is also used in [10] to obtain sets of objects trajectory

and subsequently detect the stopped vehicles. Firstly, a robust motion detector

is used to identify the vehicles in the scene. Then, the tracking process is used
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to analyze the blob’s activity. An optical flow algorithm is employed to follow

feature points inside the detected blobs frame by frame, using local and global

information. This information is used to manage the blobs tracking and to

identify occlusions. An effective SOM neural network is used to detect and

remove outliers during the object occlusion. By analyzing the centroids of the

tracked objects, a set of trajectories is obtained. After a moving average filtering

process those trajectories are used to detect vehicles that stop. Lastly, a vehicle

is classified as stopped if a subset of its trajectory is restricted inside a boundary

area.

4.2 Proposed Methodology

In this section, it is presented a novel approach to detect stopped vehicles in

highways in cluttered conditions. The main assumption for this method is that

if a given pixel is classified as foreground and it maintains the same color during

a certain period of time, then it probably belongs to a stopped vehicle.

The proposed methodology does not require object tracking. Therefore, it

is not restricted to predefined event heuristics that require detection, tracking

and identification of every single object in the scene. The performance of this

method is not upper-bounded to error prone detection/tracking and correspon-

dence tasks that usually fail in crowded scenes. The trajectory analysis based

methodologies also fail in situations where the displacement of the vehicle in

the image is too small due to the perspective effect.

The proposed stopped vehicles detection system has three main phases.

Firstly, every vehicle currently in the scene is identified and segmented using a

robust segmentation process (presented in Sec. 2.2). Secondly, the color of every

segmented pixels is analyzed to identify the segmented pixels that are static in

the image. In order to identify the static pixels, a pixel history cache is used.

This process is inspired in a methodology introduced by Kim et. al. [46] to

perform the segmentation of moving objects in the scene (see Sec. 2.1.1). The

identified static pixels are then grouped into blobs and labeled. Finally, and

after identifying the blobs, a spatiotemporal validation is applied to those blobs

to discard some false positives. This validation process is also used to establish
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Figure 4.1: Flowchart of the proposed stopped vehicles detection process.

the minimum period of time that the vehicle should be stopped to be classified

as stopped vehicle. It is not desired to detect vehicles in a traffic jam situation,

where vehicles stop for a short period of time. A blob is classified as stopped

vehicle if it maintains the same size and position during a certain period of time.

If the validation succeeds, an alarm is triggered in the traffic telematic system.

A flowchart of the presented stopped vehicle detection system is shown in Fig.

4.1.

4.3 Static Pixels Identification

Static pixels are identified by the analysis of the segmented pixels color history.

A pixel is classified as static if it is labeled as foreground with the same color

during a certain period of time. A data structure called pixel history cache is

used to maintain the pixel color history. For each pixel it is maintained the set

of colors that were assigned to the pixel in the last Th frames and its frequency

information. The pixel history cache is an array with the image size dimension.

Each array cell corresponds to a pixel history, Ix,y, called Codebook that has

a list of Codewords. Each Codeword represents a color that was assigned to

the pixel (x, y), it is composed by the RGB color components and a validation

buffer. The validation buffer stores the occurrence history of the color in the

last α frames. This validation buffer of a given pixel x, y is updated with ’1’ if
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Figure 4.2: Flowchart of the pixel history cache data structure used to store the

pixels color history and subsequently used to identify the static pixels.

the color matches the color of It
x,y, otherwise it is updated with ’0’. If the pixel

(x, y) has not been classified as foreground in the current frame the validation

buffer is also updated with ’0’. The validation buffer is shifted before the update

procedure and the update is performed in the first cell of the buffer. Occlusions,

vibrations or lighting changes that can temporarily hide or change a pixel color

of the vehicle are taken into account with this validation structure. A flowchart

of this pixel history cache data structure is depicted in Fig. 4.2.

4.3.1 Cache Update

For each foreground pixel (x, y) it is verified if the current color of It
x,y matches

the color of any codeword present in the codebook (x, y). The metric used to

identify a match between two colors is the same presented in Sec. 2.1.1. The

color matching area is represented by a cylinder in RGB color space (Fig. 2.2).

A match occurs when the sample color and brightness distortion are within

the parameters. ε, α and β were defined empirically using several datasets of

outdoor scenarios. If a match between It
x,y and a codeword occurs, the RGB

components are updated with a weighted average of It
x,y, and the validation

buffer is updated with ’1’. For all the other codewords present in the codebook

(x, y) the buffer is updated with ’0’. If there is no codeword matching, a new

codeword is created in the pixel (x, y) codebook. Every codeword of the pixels
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classified as background in the current frame are also updated with ’0’. Finally,

every Cache codeword in which the color was not assigned to the pixel Ix,y in

the last Th frames is deleted from the codebook (see Algorithm 3).

Algorithm 3 Pixel color history cache update.
1: for all pixel φ do

2: Match = 0

3: for all Codeword CWi of pixel φ do

4: if colordist(CWi, I(φ)) < ε then

5: Update the Validation Buffer of CWi with ’1’

6: Match = 1

7: else

8: Update the Validation Buffer of CWi with ’0’

9: end if

10: if last frame was assigned(CWi) > Th then

11: Delete the Codeword CWi from the pixel history

12: end if

13: end for

14: if Match = 0 then

15: Create new Codeword with I(φ) color

16: end if

17: end for

4.3.2 Static Pixels Detection

A pixel (x, y) is classified as static if there is a codeword in the codebook (x, y)

with β occurrences over the last α frames. This strategy handles the occlusion

problem mentioned above. However, when a stopped vehicle turns on the hazard

warning lights, two or more colors are intermittently assigned to the pixels in

the light’s region. To deal with this particular, but frequent situation, a pixel is

also validated as static whenever two codewords have more then β/2 occurrences

over α frames. An example of stopped vehicle detection in this conditions is

depicted in Fig. 4.3(b) (see Algorithm 4).

The system’s parameters were obtained empirically during several experi-
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Algorithm 4 Static pixel identification.
1: for all pixel φ do

2: number of half β = 0

3: for all Codeword CWi of pixel φ do

4: hits = count hits on validation buffer(CWi)

5: if hits > β then

6: Assign pixel φ as static

7: end if

{ Deal with the hazard warning lights }
8: if hits > β/2 then

9: number of half β + +

10: end if

11: if number of half β > 1 then

12: Assign pixel φ as static

13: end if

14: end for

15: end for

ments conducted in outdoor scenarios in order to maximize the system’s per-

formance (Th = 25, β = 40, α = 64, and ε = 30).

4.4 Stopped Vehicle Validation

After the static pixel detection procedure, a labeling procedure is used to identify

the stopped blobs. Not all the stopped blobs are in fact stopped vehicles. These

can be vehicles moving slowly in the image due to perspective effect or to a

traffic jam situation. A spatiotemporal validation is used to discard this kind

of false positives. A vehicle is classified as stopped if it maintains the same

position and size during a certain period of time (tv). If the validation succeeds,

an alarm is triggered.

This validation period, tv, is also used to establish the minimum period of

time during which the vehicle should be stopped to be classified as stopped

vehicle, it is not desired to detect vehicles in a traffic jam situation, where

vehicles stop for a short period of time. In order to deal with perspective effect
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near the image vanishing point, the validation period is inversely proportional

to the average velocity on the region where the stopped blob is. This average

velocity is obtained by the average optical flow module estimation during a

certain period of time in a learning phase just like in Sec. 3.4).

4.5 Experimental Results

The stopped vehicle detection system proposed in this chapter was tested in

several outdoor conditions in order to evaluate the system performance. Two

different types of tests were performed: a) tests with test sets available on

the Web – these tests are very interesting to evaluate comparative results with

other developed algorithms to detect stopped vehicles (Sec. 4.5.1); and b) tests

performed on-site in some outdoor scenarios during several hours/days – these

tests allow us to analyze the performance of the system with different weather

conditions, illuminations changes, image quality and fields of view (Sec. 4.5.2).

Some examples of stopped vehicle detection with success are shown in Fig.

4.3. The green bounding box in the left column images represents the vehi-

cle detection, and the red bounding box represents the detection of a stopped

vehicle. A chromatic representation of the frequency of the most frequent code-

word for each pixel is shown in the middle column images, where the blue color

means that the most frequent codeword has matched only once and the red

color means that the frequency is above the threshold and that the pixel is con-

sidered as static. On the right column images it is represented the color of the

most frequent codeword. In the area of a stopped vehicle, the color of the most

frequent codeword should be the same as the pixel color of the vehicle. The

green pixels represent the absence of codewords for those pixels. A sequence

of images showing the detection of a stopped vehicle under occlusion of other

vehicles circulating on the road is shown in Fig. 4.4.

4.5.1 Tests Performed in Public Datasets

The proposed stopped vehicle detection system was tested with some public

datasets used in the literature (see Table 4.1). Four different datasets were ana-

lyzed: a) i-Lids dataset for IEEE International Conference On Advanced Video
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and Signal Based Surveillance – AVSS 20071; b) Imagery library for intelli-

gent detection systems (i-LIDS)2; c) OpenVISOR – VIdeo Surveillance Online

Repository3; and d) International Workshop on Video Surveillance & Sensor

Networks (VSSN 2006) – Algorithm competition in foreground/background seg-

mentation4. The performance of the proposed stopped vehicle detection system

tested with these datasets is presented in Table 4.2. The system detected all

the stopped vehicles in the datasets without any false positive detected.

4.5.2 Tests Performed On-Site

The proposed stopped vehicle detection system was tested in some outdoor sites

during 24 hours. The tests were performed under different weather conditions,

illumination and fields of view. The test sites are described in Table 4.3.

Table 4.4 shows the experimental results obtained in the test scenarios. Dur-

ing the performed experiments it was verified that the mis-detection of stopped

vehicles was due to the lack of image contrast. Most of the false positives are

caused by the segmentation process used as input in this system. The segmen-

tation process does not handle all the sudden illumination changes and some of

these situations result in a false positive detection. Sudden illumination changes

are mainly caused by artificial lighting variation. Another cause of false positive

detection – not so frequent – is caused by segmented objects with the same color

and appears frequently (see Fig. 4.5).

The proposed system is able to detect stopped vehicles in highways over a

320×240 pixel image at 16 fps on a 3.2 GHz P4 Intel Processor under Linux OS

(foreground segmentation process and stopped vehicle detection system).

1i-Lids dataset for AVSS 2007 web site: http://www.elec.qmul.ac.uk/staffinfo/andrea/

avss2007 d.html
2i-LIDS web site: http://scienceandresearch.homeoffice.gov.uk/hosdb/

cctv-imaging-technology/video-based-detection-systems/i-lids/

ilids-datasets-pricing/ parked-vehicle-detection?view=Standard
3OpenVISOR web site: http://www.openvisor.org/

video videosInCategory.asp?idcategory=12
4VSSN 2006 web page: http://mmc36.informatik.uni-augsburg.de/VSSN06 OSAC/
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Video Preview Duration

V1 – AVSS – PV Medium 00:02:29

V2 – AVSS – PV Hard 00:02:54

V3 – ILIDS – PVTR 1 00:07:16

V4 – ILIDS – PVTR 2 00:02:09

V5 – ILIDS – PVTR 3 00:04:16

V6 – OpenVisor – StoppedVehicle Video 0 00:01:50

V7 – OpenVisor – StoppedVehicle Video 1 00:02:13

V8 – OpenVisor – StoppedVehicle Video 2 00:02:00

V9 – OpenVisor – StoppedVehicle Video 3 00:02:03

V10 – VSSN – TunnelVideo 00:08:00

Table 4.1: Public datasets used to validate the stopped vehicle detection system.
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Video Ground Truth Detection Rate False Positives

V1 1 1 0

V2 1 1 0

V3 2 2 0

V4 2 2 0

V5 2 2 0

V6 2 2 0

V8 1 1 0

V9 1 1 0

V10 3 3 0

Table 4.2: Performance of the proposed stopped vehicle detection system in

some public datasets.

4.6 Conclusions

In this chapter, a methodology to detect stopped vehicles in highways based on

a pixel color history is proposed. This system uses as input the result of a fore-

ground segmentation process presented in Sec. 2.2. A pixel color history cache

is constructed with the foreground pixels and, afterwards, the history cache is

analyzed in order to identify static pixels. The static pixels are grouped into

blobs and validated. If the temporal validation succeeds an alarm is triggered.

The proposed system was validated on-site in several different scenarios of

Portuguese highways during several days. The system was also tested with

several datasets available on the Web. The experiments demonstrate that the

proposed system is able to detect stopped vehicles in outdoor scenarios with a

good accuracy, and that it is robust to different weather conditions, illumination

changes and image quality variation. The system achieved an excellent detection

rate and a low false positive rate. The false positives are mainly caused by

sudden illumination changes not handled by the segmentation process.
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Site Preview Duration Description

S1 1 day
Tunnel entrance in a Por-

tuguese highway.

S2 1 day
Part of a parking lot at the

Coimbra University.

S3 1 day

Toll booth in a Portuguese

highway. Several vehicles

stopped to pay the toll.

S4 50 days

Tunnel scenario in a Por-

tuguese highway. No ground

truth available for this site.

Table 4.3: Scenarios used to perform the on-site tests to the proposed stopped

vehicle detection system.
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Scenario Ground Truth Detected False Positives/day

S1 3 3 1

S2 79 78 3

S3 1009 1009 2

S4 - 62 0.38

Table 4.4: Performance of the proposed stopped vehicle detection system tested

on-site in some outdoor scenarios.
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(a)

(b)

(c)

(d)

(e)

Figure 4.3: Some examples of stopped vehicle detection in some Portuguese

highways scenarios. a) tunnel entrance; b) stopped vehicle with the hazard

warning lights turned on; c) tunnel scenario; d) stopped vehicle on the left side

road (the one on the right was validated before); and e) bridge scenario.
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(a) Frame It with the detected

vehicles.

(b) Number of matches with

the most frequent Codeword.

(c) Color of the most frequent

Codeword.

Figure 4.4: Example of stopped vehicle detection with occlusions.
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Figure 4.5: False stopped vehicle detection. The areas where the vehicle’s light-

ing is projected are segmented as foreground. For each pixel of those areas, the

most frequent color is white and those pixels are classified as static.
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Part III

Automatic Traffic

Surveillance System
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Chapter 5

AVISAR Project

5.1 Introduction

In the context of the road telematics project, Brisa1 provided their highways

with a large road surveillance infrastructure, with the aim of monitoring traf-

fic and, in case of a possible dangerous situation, of analyzing and remotely

accompanying the situation and its impact.

For the optimization of the project’s efficiency, the network was subject to

a thorough analysis. This analysis aimed at finding the right places to install

the cameras, based on criteria like traffic intensity, vehicle’s accidents or other

events, access ways and other strategic places of coverage. The monitoring

operation center, CCO [Centro de Coordenação Operacional], was provided with

state-of-the-art equipment and systems for the control and operation of this

surveillance infrastructure, integrated in the Brisa’s Road Telematic System.

It is in this context, of more than 500 cameras and an available team of 8

elements for monitoring and operating, that the AVISAR Project arises, for the

automatic detection of incidents and to monitor the traffic on the highways. This

ATS system is divided in two main parts: a) an Automatic Incident Detection

(AID) system [9, 61, 60, 58, 59, 57] and b) an Automatic Traffic Monitoring

(ATM) system [51, 53, 52]. On this chapter it will be described the AID system

developed to detect incidents in the highways managed by Brisa. The main
1Brisa – Auto-estradas de Portugal S.A. (www.brisa.pt)
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modules of this AID system were developed and validated during the research

work presented on this thesis and were described previously.

The objective of this project is to develop automatic mechanisms for the

analysis and learning of traffic’s normal behavior patterns, anywhere on the

road network, and from that knowledge obtaining an automatic identification

of anomalous situations that may interfere with the road’s normal circulation

conditions and safety, according to the above established for the manual anal-

ysis. In the case of an anomalous situation, the AID system shall dynamically

integrate the systems and services that support operations for the possible ac-

tivation of response plans. The Brisa side infrastructure responsible for the

telematic management is the iBrisa management system.

Summing up, with the AVISAR Project, one intends to provide the video

surveillance cameras integrated in the Brisa’s Road Telematic System with the

necessary mechanisms to aid the video surveillance task, aiming at warning

about potentially anomalous and dangerous events to road safety.

This project was designed and developed together with Institute of Systems

and Robotics2 and with the collaboration of MakeWise3 in the system integra-

tion.

5.2 System Description

The automatic incident detection system of this automatic traffic surveillance

system prototype was developed using the algorithms presented on this thesis.

The flow chart of this system is depicted in Fig. 5.1. In order to attain an

effective management of the system it was necessary to develop an efficient user

interface and communication layer as well.

During the initialization of the system some parameters can be set. Some of

these parameters are: the learning period, the video source, the video capture

channel and the scene masks. The scene masks allow the system to achieve

an overall better performance, increasing the frame rate, decreasing the false

positive rate of the AID system and not analyzing non wanted secondary roads.

These scene masks will be described in Sec. 5.4.
2Institute of Systems and Robotics – University of Coimbra (www.isr.uc.pt)
3MakeWise, Engenharia de Sistemas de Informação (www.makewise.pt)
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Figure 5.1: Flow chart of the developed Automatic Traffic Surveillance System

prototype.

An event is called when an incident is detected by the system (Wrong Way

Vehicle or Stopped Vehicle) and useful information about the event will be send.

The event information is then send to iBrisa through the telematic management

system and the human operator notified. The information provided through the

event is defined below.

Incident Event Data

- Incident Type

- Confidence Level

- Direction

- Lane Label

- Time and Date

- Incident Video

With the provided information, the human operator will be able to verify if

it is in fact a dangerous situations and activate the possible response plans.

In order to allow the analysis of false positives, some useful information

about the system and the scene is stored in the machine where ATS System
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is running. Some of the stored information is: sequence of images about the

incident, image with the learned flow directions and module, video with the

incident, scene masks, and frame rate. For a stopped vehicle detection event, it is

also stored the chromatic representation of the pixel color frequency image, most

frequent color pixel image, first background image, second background image,

median background image, minimum difference between background models

image, segmented pixels image, and pixels segmented only with Tl image. A

private web site was developed to analyze this information about the incidents

in a structured way, this web site will be presented in Sec. 5.5. This information

is available via FTP server in every machine running the ATS System. In order

to allow the analysis of miss detections, it is also stored video clips with a

predefined duration of the last days.

This ATS System is presented as a shared library of Linux operating system

and is supplied with some useful interface methods that are listed below:

startProcessing() – Starts the ATS System.

stopProcessing() – Stops the ATS System.

setMask(MaskData) – Set the scene masks.

forceEvent() – Force an event in order to test the communication.

initialize(ConfigurationParameters) – Set the configuration parameters.

getFrame(FrameType) – Returns a frame by type. Several inner processing

images can be returned. This method can be called through a web browser

and can be very useful for online debugging of the system.

doAction(ActionType) – Preforms an action (e.g.: start storing a video se-

quence, delete debug data, restart the system, etc.). This method can also

be called through a web browser.

Some details about the integration of the library of the presented ATS Sys-

tem with the iBrisa will be given in Sec. 5.3.
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5.3 System Integration

The architecture of the developed system integration adopts the SOA paradigm,

where every instance of the native ATS library, executed in an individual ma-

chine, is made available through a service, known as ATS agent, which corre-

sponds to a Java software component (see Fig. 5.2). This service is consumed

by the central TMS application (Telematic Management System, developed us-

ing Java, as well), and is responsible for the interaction with all the existing

ATS agents in the Brisa network (see Fig. 5.3), including the asynchronous

reception of detection events originated by the native library. This TMS appli-

cation is made available through a WebService interface, which allows it to be

used by components of the iBrisa platform, specifically developed for the ATS

system. With this architecture, every functionalities of the native library can

be used and controlled by a remote central component. The robustness of this

architecture was proved with the addition of new sites of ATS agents without

disturbing the normal functioning of the ATS system. This system integration

was developed by MakeWise.

C++
 Java


ATS
 Library


Wrapper


ATS
 Adapter


Jini
 Service


JNI


Figure 5.2: Integration of the ATS System library with ATS Adapter.

5.4 Scene Masks

The scene masks are data structures that store information about the scenario

that is being analyzed. Three different scene mask are used in this ATS System

in order to increase the system’s performance: a) the scene processing mask;

b) the lanes identification mask; and c) the learned flow patterns mask. These

masks are stored in the database of iBrisa and are supplied to the ATS agent
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Figure 5.3: Integration of the ATS System in the Brisa surveillance cameras

network and communication with iBrisa.

when it is required to start processing. For PTZ cameras, a set of masks is

stored for each preset position.

The scene processing mask is used to define the area of the image that

corresponds to the roads to perform the surveillance (two examples of this mask

are depicted in Fig. 5.5). Only the pixels inside this mask are analyzed by the

ATS System. This way, the frame rate of the overall system increases and the

false positive rate can decrease. This mask is very important for the wrong way

vehicle detection system in order to not process non highway roads; secondary

roads near highways are discarded from the analysis (see Fig. 5.4). If, eventually,

a two way secondary road is captured by the camera, the system is not able to

correctly learn the flow direction patterns and several false positives can be

detected. A processing mask is defined by the user and is stored in a database

for each camera preset position.

The lane identification mask is used to identify each lane of the analyzed

roads. This information is important to report, in the incident events, in which

129



(a) (b)

Figure 5.4: Two examples of scenarios with non wanted roads to analyze. a)

Two way road on the left side of the highway; b) Bridge over the highway.

(a) (b)

Figure 5.5: Two examples of scene processing mask.

lane has the detected incident occurred. Two examples of the definition of this

mask are depicted in Fig. 5.6. A lane identification mask is defined by the user

and is stored in a database for each camera preset position.

The learned flow pattern mask is used to store the information of the learning

process of the image flow patterns. This mask is loaded onto the system when it

starts and it is used as an initial estimation for the learning process. After the

learning process, this mask is updated in the database. Therefore, the learning

period decreases. Two examples of the learned flow pattern mask are depicted

in Fig. 5.7.
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(a) (b)

Figure 5.6: Two examples of scene lanes identification mask.

(a) (b)

Figure 5.7: Two examples of scene learned flow patterns mask.

5.5 Online Analysis

The ATS Systems are installed in machines near the cameras, not to degrade

the image quality in the video transmission/compression. The communication

between the ATS System and the iBrisa is performed through a TCP/IP optical

fiber private network along the highways. A web interface was developed to

allow the real-time analysis of the ATS System. With this interface web site

(authentication required) it is possible to analyze the results of the ATS in

real-time through the use of the method getFrame() in the library. This web

interface also allows analyzing the data of the incident detected events stored

in the machine. PHP scripts are used to read the stored data trough an FTP

server and then displaying the data in an intuitive way. Some examples of the

web site are shown in Figs. 5.8, 5.9, 5.10, and 5.11.

131



Figure 5.8: Real-time processing images of a set of sites.

Figure 5.9: Real-time processing images of a site with detailed information.
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Figure 5.10: List of wrong way vehicle events detected for a site.

Figure 5.11: Stored data of a wrong way vehicle event.
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Chapter 6

Conclusion

6.1 Achieved Objectives

This thesis is the result of the study carried out in video surveillance solutions

to detect dangerous behaviors in highways in order to improve road safety. The

main objective was the study, analysis, proposal and development of architec-

tures, models and algorithms to create a robust automatic traffic surveillance

system for highways focused on the automatic detection of incidents.

Most of the main modules required for a real automatic traffic surveillance

system have been considered during the research work, going from the low level

foreground segmentation to the high level dangerous behavior detection. At the

low level analysis, a robust segmentation process for outdoor scenarios based

on background subtraction was presented. Shadow removal and optical flow

algorithms were also analyzed and implemented to improve the reliability of

the system. At the high level analysis, two of the most dangerous behaviors in

highways were analyzed. A solution to detect stopped vehicles in the road or

in the hard shoulder based on the pixel color history analysis was presented. It

was also presented a solution to detect wrong way vehicles based on optical flow

information analysis.

The solutions proposed on this thesis were tested and compared with other

state-of-the-art methodologies. Several datasets of Portuguese highways from

different sites, fields of view, weather conditions, hour of the day and with illumi-
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nation changes were used to validate the effectiveness of the proposed solutions.

Some public datasets were also used in order to evaluate comparative results

of the proposed solutions with other methods presented in the literature. The

performed experiments proved the robustness and the accuracy of the proposed

methodologies to detect anomalous situations in highways. Experimental tests

on site were also performed to the global traffic surveillance system in some Por-

tuguese highways scenarios. Very good results were obtained during the several

months of tests. These results proved the robustness of the proposed solutions

in helping human operators detect dangerous behaviors in highways.

Together with the proposal of new paradigms and techniques, the presented

research work was used in several modules of a real implementation of an auto-

matic traffic surveillance system prototype. This automatic traffic surveillance

system is currently being used in several sites of Portuguese highways to auto-

matically detect vehicles circulating on the wrong direction and vehicles that

stop in the road or in the hard shoulder.
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6.2 Publications

During the research carried out on ITS technologies two main topics were fo-

cused. The first one addresses collision avoidance systems to be applied on

board. The second one, the subject of this thesis, addresses automatic surveil-

lance systems used to monitor drivers’ behaviors in highways. This research

work gave place to some publications listed below:

• “Stopped Vehicle Detection System for Outdoor Traffic Surveillance”, in

proceedings of RecPad 2008. Coimbra, Portugal, 2008.

• “Robust Segmentation for Outdoor Traffic Surveillance”, in proceedings

of IEEE ICIP 2008. San Diego, California, U.S.A., 2008.

• “Robust Segmentation Process to Detect Incidents on Highways”, in Lec-

ture Notes in Computer Science, Springer Berlin, volume 5112, 2008.

• “A Wrong Way Drivers Detection System Based In Optical Flow”, in

proceedings of IEEE ICIP 2007, San Antonio, Texas, U.S.A., 2007.

• “A Framework for Wrong Way Driver Detection Using Optical Flow”, in

Lecture Notes in Computer Science, Springer Berlin, volume 4633, 2007.

• “A Lidar and Vision-based Approach for Pedestrian and Vehicle Detection

and Tracking”, in proceedings of IEEE ITSC 2007, Seattle, U.S.A., 2007.

• “Towards a Robust Vision-based Obstacle Perception with Classifier Fu-

sion in Cybercars”, in Lecture Notes in Computer Science, Springer Berlin,

volume 4739, 2007.

• “Vision-Based Pedestrian Detection Using Haar-Like Features”, in journal

Robótica, number 67, pages 16–20, 2007.

• “Tracking and Classification of Dynamic Obstacles Using Laser Range

Finder and Vision”, in proceedings of IEEE IROS 2006, Beijing, China,

2006.

• “Vision-Based Pedestrian Detection Using Haar-Like Features”, in pro-

ceedings of Scientific Meeting of Robótica 2006, Guimarães, Portugal,

2006.
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